Bulletin of Mathematical Biology

, Volume 51, Issue 1, pp 125–131 | Cite as

Tutorial on large deviations for the binomial distribution

  • R. Arratia
  • L. Gordon
Article

Abstract

We present, in an easy to use form, the large deviation theory of the binomial distribution: how to approximate the probability ofk or more successes inn independent trials, each with success probabilityp, when the specified fraction of successes,a≡k/n, satisfies 0<p<a<1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Arratia, R., L. Goldstein and L. Gordon. 1989. “Two Moments Suffice for Poisson Approximations: the Chen-Stein Method.” To appear inAnn. Probability.Google Scholar
  2. Arratia, R., and E. Lander. 1988. “The Distribution of Clusters in Random Graphs.” Preprint. Bahadur, R. H. 1971. “Some Limit Theorems in Statistics.” SIAM Regional Conference Series in Applied Mathematics, Vol. 4.Google Scholar
  3. —, and R. Ranga Rao. 1960. “On Deviations of the Sample Mean.”Ann. Math. Statist. 31, 1015–1027.MathSciNetGoogle Scholar
  4. H. Cramer. 1938. “Sur un Nouveaux Theoreme-Limite de la Theorie des Probabilities.” Actualites Scientifiques et Industrielles; Colloque consacre a la Theorie des Probabilites. Vol. 3, No. 736, pp. 5–23. Paris: Hermann.Google Scholar
  5. Ellis, R. S. 1985.Entropy, Large Deviations, and Statistical Mechanics. Berlin Springer.Google Scholar
  6. Feller, W. 1968.An Introduction to Probability Theory and its Applications. Vol. 1. New York: Wiley.Google Scholar
  7. Varadhan, S. R. S. 1984. “Large Deviations and Applications.” SIAM Regional Conference Series in Applied Mathematics, Vol. 46.Google Scholar
  8. Waterman, M. S., R. Arratia and D. Galas. 1984. Pattern Recognition in Several Sequences: Consensus and Alignment.Bull. Math. Biol. 46, 515–527.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1989

Authors and Affiliations

  • R. Arratia
    • 1
  • L. Gordon
    • 1
  1. 1.Department of MathematicsUniversity of Southern CaliforniaLos AngelesU.S.A.

Personalised recommendations