Bulletin of Mathematical Biology

, Volume 52, Issue 3, pp 375–396 | Cite as

Generation cycles in stage structured populations

  • V. A. A. Jansen
  • R. M. Nisbet
  • W. S. C. Gurney


Some insect populations exhibit cycles in which successive population peaks may correspond to effectively discrete generations. Motivated by this observation, we investigate the structure of matriarchal generations in five simple, continuous-time, stage structure models in order to determine the proportion of individuals in one population peak who are the offspring of individuals in the pervious peak. We conclude that in certain models (including a model of Nicholson's blowflies) successive population peaks do not correspond to discrete generations, whereas in others (including some models of uniform larval competition) successive peaks may well approximate discrete generations. In all models, however, there is eventually significant overlap of generations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bellows, Jr., T. S. 1981. The descriptive properties of some models for density dependence.J. Anim. Ecol. 50, 139–156.MathSciNetCrossRefGoogle Scholar
  2. Bellows, Jr., T. S. 1982. Simulation models for laboratory populations ofCallosobruchus chinensis andC. maculatus.J. Anim. Ecol. 51, 597–623.CrossRefGoogle Scholar
  3. Bellows, Jr., T. S. and M. P. Hassell 1988. The dynamics of age structured host parasitoid interactions.J. Anim. Ecol. 57, 259–268.CrossRefGoogle Scholar
  4. Crowley, P. H., R. M. Nisbet, W. S. C. Gurney and J. H. Lawton 1987. Population regulation in animals with complex life histories: formulation and analysis of a damselfly model.Adv. Ecol. Res. 17, 1–59.CrossRefGoogle Scholar
  5. Diekmann, O., R. M. Nisbet, W. S. C. Gurney and F. van den Bosch. 1986. Simple mathematical models for cannibalism: a critique and a new approach.Math. Biosci. 78, 21–46.MATHMathSciNetCrossRefGoogle Scholar
  6. Ebenman, B. 1988. Competition between age classes and population dynamics.J. theor. Biol. 131, 389–400.MathSciNetGoogle Scholar
  7. Godfray, H. C. J. and M. P. Hassell 1989. Discrete and continuous insect populations in tropical environments.J. Anim. Ecol. 58, 153–174.CrossRefGoogle Scholar
  8. Gurney, W. S. C., S. P. Blythe and R. M. Nisbet 1980. Nicholson's blowflies revisited.Nature 187, 17–21.CrossRefGoogle Scholar
  9. Gurney, W. S. C., R. M. Nisbet and J. H. Lawton 1983. The systematic formulation of tractable single species population models including age-structure.J. Anim. Ecol. 52, 479–495.CrossRefGoogle Scholar
  10. Gurney, W. S. C. and R. M. Nisbet 1985. Generation separation, fluctuation periodicity, and the expression of larval competition.Theor. Pop. Biol. 28, 150–180.MATHMathSciNetCrossRefGoogle Scholar
  11. Hastings A. 1987. Cycles in cannibalistic egg larval interactions.J. math. Biol. 24, 651–666.MATHMathSciNetGoogle Scholar
  12. Hastings, A. and R. F. Constantino 1987. Cannibalistic egg-larval interactions inTribolium: an explanation for the oscillations in larval numbers.Am. Nat. 130, 36–52.CrossRefGoogle Scholar
  13. Jones, A. E., R. M. Nisbet, W. S. C. Gurney and S. P. Blythe 1988. Period to delay ratio near stability boundaries for systems with delayed feedback.J. math. Anal. Appl. 135, 354–368.MATHMathSciNetCrossRefGoogle Scholar
  14. Lawton, J. H. and M. P. Hassell 1981. Asymmetric competition in insects.Nature (Lond.) 289, 793–796.CrossRefGoogle Scholar
  15. MacDonald, N. 1976. Avoiding chaos in population models.Math. Biosci. 31, 255–257.MATHMathSciNetCrossRefGoogle Scholar
  16. May, R. M. 1974.Stability and Complexity in Model Ecosystems. Princeton University Press.Google Scholar
  17. Maynard Smith, J. 1974.Models in Ecology. Cambridge University Press.Google Scholar
  18. Nicholson, A. J. 1954. An outline of the dynamics of animal populations.Aust. J. Zool. 2, 9–65.CrossRefGoogle Scholar
  19. Nicholson, A. J. 1957. The self adjustment of populations to change.Cold Spring Harb. Symp. quant. Biol. 22, 153–173.Google Scholar
  20. Nisbet, R. M. and J. R. Bence 1989. Alternative dynamic regimes for canopy forming kelp: A variant on density vague population regulation.Am. Nat., in press.Google Scholar
  21. Nisbet, R. M. and W. S. C. Gurney 1982.Modelling Fluctuating Populations. New York: Wiley.MATHGoogle Scholar
  22. Nisbet, R. M., W. S. C. Gurney and J. A. J. Metz 1989. Stage structure models applied in evolutionary ecology. InMathematical Ecology II, L. A. Gross, T. Hallam and S. A. Levin (eds). Heidelberg: Springer Verlag.Google Scholar
  23. Oster, G. 1976. Internal variables in population dynamics. InLect. Math. Life Sci. 8, 37–68.Google Scholar
  24. Prout, T. and F. McChesney 1985. Competition among immatures affects their adult fertility: population dynamics.Am. Nat. 126, 521–558.CrossRefGoogle Scholar
  25. Readshaw, J. L. and W. R. Cuff 1980. A model of Nicholson's blowfly cycles and its relevance to predation theory.J. Anim. Ecol. 49, 1005–1010.MathSciNetCrossRefGoogle Scholar
  26. Rubinow, S. I. and R. Oppenheim Berger 1979. Time-dependent solution to age-structured equations for sexual populations.Theor. Pop. Biol. 16, 35–47.MATHCrossRefGoogle Scholar
  27. Stokes, T. G., W. S. C. Gurney, R. M. Nisbet and S. P. Blythe 1988. Parameter evolution in a laboratory insect population.Theor. Pop. Biol. 34, 248–265.MATHCrossRefGoogle Scholar
  28. Takahashi, F. 1973. An exponential study on the suppression and regulation of the population ofCadia cantella (Walker) (Lepidoptera: Pyralidae) by the action of a parasitic wasp,Nemeritis canescens Gravenhorst (Hymenoptera: Ichneumonidae). Mem. Col. Agric. Kyoto Univ.104, 1–12.Google Scholar
  29. Varley, G. C., G. R. Gradwell and M. P. Hassell 1973.Insect Population Ecology. London: Blackwell Scientific.Google Scholar
  30. White, E. E. and C. B. Huffaker 1969. Regulatory processes and population cyclicity in laboratory populations ofAnagasta kueniella (Zeller) (Lepidoptera: Phycitidae). I: Competition for food and predation.Res. Pop. Ecol. 11, 57–83.Google Scholar

Copyright information

© Society for Mathematical Biology 1990

Authors and Affiliations

  • V. A. A. Jansen
    • 1
    • 2
  • R. M. Nisbet
    • 1
  • W. S. C. Gurney
    • 1
  1. 1.Department of Physics and Applied PhysicsUniversity of StrathclydeGlasgowU.K.
  2. 2.Department of EntomologyAgricultural University of WageningenWageningenThe Netherlands

Personalised recommendations