Bulletin of Mathematical Biology

, Volume 57, Issue 1, pp 63–76

Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge

  • John B. Collings
Article

Abstract

The non-linear behavior of a differential equations-based predator-prey model, incorporating a spatial refuge protecting a consant proportion of prey and with temperature-dependent parameters chosen appropriately for a mite interaction on fruit trees, is examined using the numerical bifurcation code AUTO 86. The most significant result of this analysis is the existence of a temperature interval in which increasing the amount of refuge dynamically destabilizes the system; and on part of this interval the interaction is less likely to persist in that predator and prey minimum population densities are lower than when no refuge is available. It is also shown that increasing the amount of refuge can lead to population outbreaks due to the presence of multiple stable states. The ecological implications of a refuge are discussed with respect to the biological control of mite pests.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Arrowsmith, D. K. and C. M. Place. 1982.Ordinary Differential Equations. London: Chapman & Hall.Google Scholar
  2. DeBach, P. and D. Rosen. 1991.Biological Control By Natural Enemies. Cambridge: Cambridge University Press.Google Scholar
  3. Doedel, E. J. 1984. The computer-aided bifurcation analysis of predator-prey models.J. Math. Biol. 20, 1–14.MATHMathSciNetCrossRefGoogle Scholar
  4. Doedel, E. J. and J. P. Kernevez. 1986.AUTO: Software For Continuation and Bifurcation Problems in Ordinary Differential Equations. Pasadena, California: California Institute of Technology.Google Scholar
  5. Fransz, H. G. 1974.The Functional Response to Prey Density in an Acarine System (Simulation Monographs). Wageningen: Pudoc.Google Scholar
  6. Hassell, M. P. 1978.The Dynamics of Arthropod Predator-Prey Systems. Princeton: Princeton University Press.Google Scholar
  7. Hoy, M. A. 1985. Almonds (California). InSpider Mites: Their Biology, Natural Enemies and Control, W. Helle and M. W. Sabelis (Eds), pp. 299–310. World Crop Pests Vol. 1B. Amsterdam: Elsevier.Google Scholar
  8. Hoyt, S. C. 1969. Integrated chemical control of insects and biological control of mites on apple in Washington.J. Eco. Entomol. 62, 74–86.Google Scholar
  9. Hoyt, S. C., L. K. Tanigoshi and R. W. Browne. 1979. Economic injury level studies in relation to mites on apple. InRecent Advances in Acarology, Vol. 1, J. G. Rodriguez (Ed.), pp. 3–12. New York: Academic Press.Google Scholar
  10. Huffaker, C. B., 1958. Experimental studies on predation: dispersion factors and predator-prey oscillations.Hilgardia 27, 343–383.Google Scholar
  11. Huffaker, C. B. and C. E. Kennett. 1956. Experimental studies on predation: predation and cyclamen-mite populations on strawberries in California.Hilgardia 26, 191–222.Google Scholar
  12. Huffaker, C. B., K. P. Shea and S. G. Herman. 1963. Experimental studies on predation (III). Complex dispersion and levels of food in an acarine predator-prey interaction.Hilgardia 34, 305–330.Google Scholar
  13. Liu, W., S. A. Levin and Y. Iwasa. 1986. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models.J. Math. Biol. 23, 187–204.MATHMathSciNetCrossRefGoogle Scholar
  14. Logan, J. A. and D. W. Hilbert. 1983. Modeling the effect of temperature on arthropod population systems. InAnalysis of Ecological Systems: State of the Art in Ecological Modeling, W. K. Lauenroth, G. V. Skogerboe and M. Flug (Eds), pp. 113–122. Amsterdam: Elsevier.Google Scholar
  15. Lotka, A. J. 1925.Elements of Physical Biology. Baltimore: williams and Wilkins.Google Scholar
  16. May, R. M. 1973.Stability and Complexity in Model Ecosystems. Princeton: Princeton University Press.Google Scholar
  17. Maynard Smith, J. 1974.Models in Ecology. Cambridge: Cambridge University Press.Google Scholar
  18. Nicholson, A. J. 1933. The balance of animal populations.J. Anim. Ecol. 2, 132–178.Google Scholar
  19. Nicholson, A. J. and V. A. Bailey. 1935. The balance of animal populations. Part I.Proc. Zool. Soc. Lond. 3, 551–598.Google Scholar
  20. Taylor, R. J., 1984.Predation. New York: Chapman & Hall.Google Scholar
  21. Van de Vrie, M. 1985. Apple. InSpider Mites: Their Biology, Natural Enemies and Control, W. Helle and M. W. Sabelis (Eds), pp. 311–325. World Crop Pests Vol. 1B. Amsterdam: Elsevier.Google Scholar
  22. Volterra, V. 1926. Variazioni e Fluttuazioni del Numero d'Individui in Specie Animali Conviventi.Mem. Acad. Lincei. 2, 31–113.Google Scholar
  23. White, E. G. and C. B. Huffaker. 1969. Regulatory processes and population cyclicity in laboratory populations ofAnagasta kühniella (Zeller) (Lepidoptera: Phycitidae) II. Parasitism, predation, competition, and protective cover.Res. Pop. Ecol. 11, 150–185.Google Scholar
  24. Wollkind, D. J. and J. A. Logan. 1978. Temperature-dependent predator-prey mite ecosystem on apple tree foliage.J. Math. biol. 6, 265–283.Google Scholar
  25. Wollkind, D. J., J. B. Collings and J. A. Logan. 1988. Metastability in a temperature-dependent model system for predator-mite outbreak interactions on fruit trees.Bull. math. Biol. 50, 379–409.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1994

Authors and Affiliations

  • John B. Collings
    • 1
  1. 1.Mathematics DepartmentUniversity of North DakotaGrand ForksUSA

Personalised recommendations