# “The arrival of the fittest”: Toward a theory of biological organization

- 211 Downloads
- 4 Citations

## Abstract

The formal structure of evolutionary theory is based upon the dynamics of alleles, individuals and populations. As such, the theory must assume the prior existence of these entities. This existence problem was recognized nearly a century ago, when DeVries (1904,*Species and Varieties: Their Origin by Mutation*) stated. “Natural selection may explain the survival of the fittest, but it cannot explain the arrival of the fittest.” At the heart of the existence problem is determining how biological organizations arise in ontogeny and in phylogeny.

We develop a minimal theory of biological organization based on two abstractions from chemistry. The theory is formulated using λ-calculus, which provides a natural framework capturing (i) the constructive feature of chemistry, that the collision of molecules generates specific new molecules, and (ii) chemistry's diversity of equivalence classes, that many different reactants can yield the same stable product. We employ a well-stirred and constrained stochastic flow reactor to explore the generic behavior of large numbers of applicatively interacting λ-expressions. This constructive dynamical system generates fixed systems of transformation characterized by syntactical and functional invariances.

Organizations are recognized and defined by these syntactical and functional regularities. Objects retained within an organization realize and algebraic structure and possess a grammar which is invariant under the interaction between objects. An organization is self-maintaining, and is characterized by (i) boundaries established by the invariances, (ii) strong self-repair capabilities responsible for a robustness to perturbation, and (iii) a center, defined as the smallest kinetically persistent and self-maintaining generator set of the algebra.

Imposition of different boundary conditions on the stochastic flow reactor generates different levels of organization, and a diversity of organizations within each level. Level 0 is defined by selfcopying objects or simple ensembles of copying objects. Level 1 denotes a new object class, whose objects are self-maintaining organizations made of Level 0 objects, and Level 2 is defined by self-maintaining metaorganizations composed of Level 1 organizations.

These results invite analogy to the history of life, that is, to the progression from self-replication to self-maintaining procaryotic organizations to ultimately yield self-maintaining eucaryotic organizations. In our system self-maintaining organizations arise as a generic consequence of two features of chemistry, without appeal to natural selection. We hold these findings as calling for increased attention to the structural basis of biological order.

## Keywords

Normal Form Flow Reactor Biological Organization Existence Problem Random Object## Preview

Unable to display preview. Download preview PDF.

## Literature

- Baas, N. A. 1993. Emergence and higher order structures. In
*Proceedings of the Conference on Systems Research and Cybernetics*, Baden-Baden. In press.Google Scholar - Bachmann, P. A., P. L. Luisi and J. Lang. 1992. Autocatalytic self-replicating micelles as models for prebiotic structures.
*Nature***357**, 57–59.CrossRefGoogle Scholar - Bagley, R. J. and J. D. Farmer. 1992. Spontaneous emergence of a metabolism. In
*Artificial Life II*, C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen (Eds), pp. 93–141. Redwood City: Addison-Wesley.Google Scholar - Bagley, R. J., J. D. Farmer and W. Fontana. 1992. Evolution of a metabolism. In
*Artificial Life II*, C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen (Eds), pp. 141–158 Redwood City: Addison-Wesley.Google Scholar - Bagley, R. J., J. D. Farmer, S. A. Kauffman, N. H. Packard, A. S. Perelson and I. M. Stadnyk. 1989. Modeling adaptive biological systems.
*Biosystems***23**, 113–138.CrossRefGoogle Scholar - Banatre, J.-P. and D. Le Metayer. 1986. A new computational model and its discipline of programming. Technical Report. INRIA Report 566.Google Scholar
- Barendregt, H. G. 1984.
*The Lambda Calculus: Its Syntax and Semantics*(second edition). Amsterdam: North-Holland.zbMATHGoogle Scholar - Berry, G. and G. Boudol. 1990. The Chemical Abstract Machine. In
*17th ACM Annual Symposium on Principles of Programming Languages*, pp. 81–94. New York: ACM Press.Google Scholar - Bjoerlist, M. C. and P. Hogeweg. 1991. Spiral wave structure in prebiotic evolution: hypercycles stable against parasites.
*Physica D***48**, 17–28.CrossRefGoogle Scholar - Buss, L. W. 1987.
*The Evolution of Individuality*. Princeton: Princeton University Press.Google Scholar - Buss, L. W. 1994. Protocell life cycles. In
*Early Life on Earth*, S. Bergstrom (Ed.). New York: Columbia University Press, In press.Google Scholar - Church, A. 1932. A set of postulates for the foundation of logic.
*Annals of Math.*(2)**33**, 346–366 and**34**, 839–864.zbMATHMathSciNetCrossRefGoogle Scholar - Church, A. 1941.
*The Calculi of Lambda Conversion*. Princeton: Princeton University Press.Google Scholar - Church, A. and J. B. Rosser. 1936. Some properties of conversion.
*Trans. Amer. Math. Soc.***39**, 472–482.zbMATHMathSciNetCrossRefGoogle Scholar - Curry, H. B. and R. Feys. 1958.
*Combinatory Logic. Volume 1*. Amsterdam: North-Holland.Google Scholar - Curry, H. B., J. R. Hindley and J. P. Seldin 1972.
*Combinatory Logic. Volume 2*, Amsterdam: North-Holland.Google Scholar - Dyson, F. 1985.
*Origins of Life*, Cambridge: Cambridge University Press.Google Scholar - Eigen, M. 1971. Self-organization of matter and the evolution of biological macro-molecules.
*Naturwissenschaften***58**, 465–526.CrossRefGoogle Scholar - Eigen, M. and P. Schuster. 1977. The hypercycle. A principle of natural self-organization. A: Emergence of the hypercycle.
*Naturwissenschaften***64**, 541–565.CrossRefGoogle Scholar - Eigen, M. and P. Schuster. 1978a. The hypercycle. A principle of natural self-organization. B: The abstract hypercycle.
*Naturwissenschaften***65**, 7–41.CrossRefGoogle Scholar - Eigen, N. and P. Schuster. 1978b. The hypercycle. A principle of natural self-organization. C: The realistic hypercycle.
*Naturwissenschaften***65**, 341–369.CrossRefGoogle Scholar - Eigen, M. and P. Schuster. 1979.
*The Hypercycle*. Berlin: Springer.Google Scholar - Eigen, M. and P. Schuster. 1982. Stages of emerging life-five principles of early organization.
*J. Mol. Evol.***19**, 47–61.CrossRefGoogle Scholar - Farmer, J. D., S. A. Kauffman and N. H. Packard. 1986. Autocatalytic replication of polymers.
*Physica D***22**, 50–67.MathSciNetCrossRefGoogle Scholar - Fisher, R. A. 1930.
*The Genetical Theory of Natural Selection*. Oxford: Clarendon Press.zbMATHGoogle Scholar - Fontana, W. 1990. Algorithmic chemistry: a model for functional self-organization. Technical Report. SFI90-011, Santa Fe Institute, Santa Fe, and Technical Report LA-UR-90-1959, Los Alamos National Laboratory, Los Alamos.Google Scholar
- Fontana, W. 1991. Functional self-organization in complex systems. In
*1990 Lectures in Complex Systems*, L. Nadel and D. Stein (Eds), pp. 407–426. Redwood City: Addison-Wesley.Google Scholar - Fontana, W. 1992. Algorithmic chemistry. In
*Artificial Life II*, C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen (Eds), pp. 159–209. Redwood City: Addison-Wesley.Google Scholar - Fontana, W. and L. W. Buss. 1993. What would be conserved ‘if the tape were played twice’
*Proceedings of the National Academy of Sciences, USA*. (In press).Google Scholar - Forrest, S. 1990. Emergent computation: self-organizing, collective cooperative phenomena in natural and artificial computing networks.
*Physica D***42**, 1–11.zbMATHMathSciNetCrossRefGoogle Scholar - Fox, S. W. and K. Dose. 1977.
*Molecular Evolution and the Origin of Life*. New York: Marcel Dekker.Google Scholar - Futrelle, R. P. and A. W. Miller. 1992. Simulation of metabolism and evolution using Quasichemistry. In
*Biomedical Modeling and Simulation*, J. Eisenfeld, D. S. Levine and M. Witten (Eds), pp. 273–280. Amsterdam: Elsevier.Google Scholar - Gould, S. J. and R. C. Lewontin. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptionist programme.
*Proc. R. Soc., London***B205**, 581–598.CrossRefGoogle Scholar - Haldane, J. B. S. 1932.
*The Causes of Evolution*, New York: Longmans, Green.Google Scholar - Hindley, J. R. and J. P. Seldin. 1986.
*Introduction to Combinators and λ-Calculus*. Cambridge: Cambridge University Press.Google Scholar - Hofbauer, J. and K. Sigmund. 1988.
*The Theory of Evolution and Dynamics Systems*. Cambridge: Cambridge University Press.Google Scholar - Huet, G. 1992.
*Constructive Computation Theory. Part I*. Notes de Cours. DEa Informatique, Mathématiques et Applications. (Available by anonymous ftp from ftp. inriafr,/INRIA/formel /cct/CCT.dvi.)Google Scholar - Huet, G. and D. C. Oppen. 1980. Equations as rewrite rules. In
*Formal Languages: Perspectives and Open Problems*, R. Book (Ed.), New York: Academic Press.Google Scholar - Jacob, F. (1982).
*The Possible and the Actual*. New York: Pantheon Books.Google Scholar - Kauffman, S. A. 1971. Cellular homeostasis, epigenesis and replication in randomly aggregated macromolecular systems.
*J. Cybernetics***1**, 71–96.Google Scholar - Kauffman, S. A. 1986. Autocatalytic sets of proteins.
*J. theor. Biol.***119**, 1–24.CrossRefGoogle Scholar - von Kiedrowski, G. 1986. A self-replicating hexadeoxynucleotide.
*Angew. Chem.***98**, 932–934.Google Scholar - Knuth, D. E. and P. E. Bendix. 1970. Simple word problems in universal algebra. In
*Computational Problems in Abstract Algebra*, J. Leech (ed.), pp. 263–297. New York: Pergamon Press.Google Scholar - Lakoff, G. 1987.
*Women, Fire, and Dangerous Things. What Categories Reveal about the Mind*. Chicago: University of Chicago Press.Google Scholar - Lane, D. 1993a. Artificial worlds and economics. Part I.
*J. Evol. Econ.***3**, 89–107.CrossRefGoogle Scholar - Lane, D. 1993b. Artificial worlds and economics. Part II.
*J. Evol. Econ.*(in press).Google Scholar - Leifer, E. M. 1991.
*Actors as Observers. A Theory of Skill in Social Relationships*New York: Garland Publishing.Google Scholar - Lewontin, R. C. 1970. The units of selection.
*Ann. Rev. Ecol. System.***1**, 1–18.zbMATHCrossRefGoogle Scholar - Lindgren, K. 1992. Evolutionary phenomena in simple dynamics. In
*Artificial Life II*, C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen (Eds), pp. 295–312. Redwood City: Addison-Wesley.Google Scholar - Lotka, A. J. 1925.
*Elements of Physical Biology*. New York: Dover.zbMATHGoogle Scholar - Luisi, P. L. 1993. Defining the transition to life: self-replicating bounded structures and chemical autopoiesis. In
*Thinking About Biology*, W. Stein and F. J. Varela (eds), pp. 3–23. Redwood City: Addison-Wesley.Google Scholar - Maturana, H. and F. Varela. 1973.
*De Máquinas y Seres Vivos: Una teoría de la organizacíon biológica*. Santiago de Chile: Editorial Universitaria. (Reprinted in English in Maturana and Varela, 1980).Google Scholar - Maturana, H. and F. Varela. 1980.
*Autopoiesis and Cognition: The Realization of the Living*. Boston: D. Reidel.Google Scholar - May, R. M. (ed.) 1976.
*Theoretical Ecology: Principles and Applications*. Oxford: Blackwell Scientific.Google Scholar - Maynard-Smith, J. 1982.
*Evolution and the Theory of Games*. Cambridge. Cambridge University Press.Google Scholar - Maynard-Smith, J., R. Burian, S. A. Kauffman, P. Alberch, J. Campbell, B. Goodwin, R. Lande, D. Raup and L. Wolpert. 1985. Development constraints and evolution.
*Q. Rev. Biol.***60**, 265–287.CrossRefGoogle Scholar - Miller, S. M. and L. E. Orgel. 1974.
*The Origins of Life on the Earth*. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar - Morowitz, H. J. 1992.
*Beginnings of Cellular Life*. New Haven: Yale University Press.Google Scholar - Newman, M. H. A. 1941. On theories with a combinatorial definition of “equivalence”.
*Annals of Math.***43**, 223–243.CrossRefGoogle Scholar - Niesert, U., D. Harnasch and C. Bresch. 1981. Origin of life Between Scylla and Charybdis.
*J. Mol. Evol.***17**, 348–353.CrossRefGoogle Scholar - Odifreddi, P. 1989.
*Classical Recursion Theory*. Amsterdam: North-Holland.zbMATHGoogle Scholar - Oparin, A. I. 1924.
*Proiskhozhdenie zhizni*. Moscow: Moskovskij Rabochij.Google Scholar - Padgett, J. F. and C. K. Ansel. 1993. Robust action in the rise of the Medici: 1400–1434.
*Am. J. Soc.***98**, 1259–1319.CrossRefGoogle Scholar - Penrose, R. 1989.
*The Emperor's New Mind*. Oxford: Oxford University Press.Google Scholar - Revesz, G. E. 1988.
*Lambda-Calculus, Combinators, and Functional Programming*. Cambridge: Cambridge University Press.zbMATHGoogle Scholar - Rössler, O. 1971. Ein systemtheoretisches Modell zur Biogenese.
*Zeitschrift für Naturforschung***26b**, 741–746.Google Scholar - Stadler, P.F., W. Fontana and J. H. Miller. 1993. Random catalytic reaction networks.
*Physica D***63**, 378–392.zbMATHMathSciNetCrossRefGoogle Scholar - Thürk, M. 1993. Ein Modell zur Selbstorganisation von Automatenalgorithmen zum Studium molekularer Evolution. PhD thesis. Friedrich-Schiller Universität Jena. Germany.Google Scholar
- Tjiuikaua, T., P. Ballester and J. Rebek Jr. 1990. A self-replicating system.
*J. Am. Chem. Soc.***112**, 1249–1250.CrossRefGoogle Scholar - Varela, F., A. Coutinho, B. Dupire and N. N. Vaz. 1988. Cognitive networks Immune, neural, and otherwise. In
*Theoretical Immunology, Part Two*, A. S. Perelson (ed.), pp. 359–375. Redwood City: Addison-Wesley.Google Scholar - Varela, F., H. R. Maturana and R. Uribe. 1974. Autopoiesis: the organization of living systems, its characterization and a model.
*Bio Systems***5**, 187–196.Google Scholar - DeVries, H. 1904.
*Species and Varieties: Their Origin by Mutation*. Chicago: Open Court.Google Scholar - Winograd, T. and F. Flores. 1986.
*Understanding Computers and Cognition*. Reading: Addison-Wesley.zbMATHGoogle Scholar