Prediction of sampling depth and photon pathlength in laser Doppler flowmetry

  • A. Jakobsson
  • G. E. Nilsson
Transducers and Electrodes

Abstract

Monte Carlo simulation of photon migration in tissue was used to assess the sampling depth, measuring depth and photon pathlength in laser Doppler flowmetry. The median sampling depth and photon pathlength in skin, liver and brain tissue were calculated for different probe geometries. The shallowest median sampling depth found was 68 μm for a 120 μm diameter single fibre probe applied to a one-layered skin tissue model. By using separate transmitting and receiving fibres, the median sampling depth, which amounted to 146 μm for a 250 μm fibre centre separation, by be successively increased to 233 μm when the fibres' centres are separated by 700 μm. Total photon pathlength and thereby the number of multiple Doppler shifts increase with fibre separation, thus favouring the choice of a probe with a small fibre separation when linearity is more important than a large sampling depth. Owing mainly to differences in the tissue g-value and scattering coefficient, the median sampling depth is shallower for liver and deeper for brain, in comparison with skin tissue. For skin tissue, the influence on the sampling depth of a homogeneously distributed blood volume was found to be limited to about 1 per cent per percentage increase in tissue blood content, and may, therefore, be disregarded in most practical situations. Simulations show that the median measuring depth is strongly dependent on the perfusion profile.

Key words

Laser Doppler flowmetry Light scattering Monte Carlo model Sampling depth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, H., Lindhagen, J., Nilsson, G. E., Salerud, E. G., Jodal, M. andLundgren, O. (1985) Evaluation of laser Doppler flowmetry in the assessment of intestinal blood flow in cat.Gastroenterol.,88, 951–957.Google Scholar
  2. Borgos, J. A. (1990) TSI's LDV blood flowmeter. InLaser Doppler blood flowmetry.Shepherd, P. andÖberg, P. -Å. (Eds.) Kluwer Academic Publishers, 73–92.Google Scholar
  3. Braverman, I. M., Keh, A. andGoldminz, D. (1990) Correlation of laser Doppler wave patterns with underlying microvascular anatomy.J. Invest. Dermatol.,95, 283–286.CrossRefGoogle Scholar
  4. Chandrasekhar, S. (1960)Radiative transfer, Dover, New York.Google Scholar
  5. Crilly, R. J. (1987) The transport of infrared radiation in biological tissue. M.Sc. Thesis, University of Alberta.Google Scholar
  6. Flock, S. T., Patterson, M. S., Wilson, B. C. andWyman, D. R. (1989a) Monte Carlo modeling of light propagation in highly scattering tissues—I: Model predictions and comparison with diffusion theory.IEEE Trans.,BME-36, 1162–1168.Google Scholar
  7. Flock, S. T., Wilson, B. C. andPatterson, M. S. (1989b) Monte Carlo modeling of light propagation in highly scattering tissues—II: Comparison with measurements in phantoms. —Ibid.,,BME-36, 1169–1173.Google Scholar
  8. Henyey, L. G. andGreenstein, J. L. (1941) Diffuse radiation in the galaxy.Astrophys. J.,93, 70–83.CrossRefGoogle Scholar
  9. Hirata, K., Nagasaka, T. andNoda, Y. (1988) Partitional measurement of capillary and arteriovenous anastomotic blood flow in the human finger by laser-Doppler-flowmetry.Eur. J. Appl. Physiol.,57, 616–621.CrossRefGoogle Scholar
  10. Holloway, G. A. Jr. (1990) Medpacific's LDV blood flowmeter. InLaser Doppler blood flowmetry.Shepherd, P. andÖberg, P. -Å. (Eds.) Kluwer Academic Publishers, 47–56.Google Scholar
  11. Ishimaru, A. (1978)Wave propagation and scattering in random media. Academic Press, New York, 175–190.Google Scholar
  12. Johansson, K., Ahn, H., Lindhagen, J. andLundgren, O. (1987) Tissue penetration and measuring depth of laser Doppler flowmetry in the gastrointestinal application.Scand. J. Gastroenterol.,22, 1081–1088.Google Scholar
  13. Johansson, K., Jakobsson, A., Lindahl, J., Lundgren, O. andNilsson, G. E. (1991) Influence of fibre diameter and probe geometry on the measuring depth of laser Doppler flowmetry in the gastrointestinal application.Int. J. Microcirc.: Clin. Exp.,10, 219–229.Google Scholar
  14. Johnson, J. M. (1990) The cutaneous circulation. InLaser Doppler blood flowmetry.Shepherd, P. andÖberg, P. -Å. (Eds.) Kluwer Academic Publishers, 121–139.Google Scholar
  15. Kiel, J. W., Riedel, G. L., Diresta, G. R. andShepherd, A. P. (1985) Gastric mucosal blood flow measured by laser Doppler velocimetry.Am. J. Physiol.,249G, 539–545.Google Scholar
  16. Marchesini, R., Bertoni, A., Andreola, E., Molloni, E. andSichirollo, A. E. (1989) Extinction and absorption coefficients and scattering phase functions of human tissues in vitro.Appl. Opt.,28, 2318–2324.CrossRefGoogle Scholar
  17. Nilsson, G. E., Tenland, T. andÖberg, P. Å. (1980a) A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy.IEEE Trans.,BME-27, 12–19.Google Scholar
  18. Nilsson, G. E., Tenland, T. andÖberg, P. Å. (1980b) Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. —Ibid.,,BME-27, 597–604.Google Scholar
  19. Nilsson, G. E. (1984) Signal processor for laser Doppler tissue flowmeters.Med. & Biol. Eng. & Comput.,22, 343–348.CrossRefGoogle Scholar
  20. Nilsson, G. E., Jakobsson, A. andWårdell, K. (1989) Imaging of tissue blood flow by coherent light scattering. In Proc. IEEE 11th Ann. EMBS Conf., Seattle, Nov. 9–12.Google Scholar
  21. Nilsson, G. E. (1990) Perimed's LDV flowmeter. InLaser Doppler blood flowmetry.Shepherd, P. andÖberg, P. -Å. (Eds.), Kluwer Academic Publishers, 57–73.Google Scholar
  22. Reynolds, R., Johnson, C. andIshimaru, A. (1976) Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters.Appl. Opt.,15, 2059–2067.CrossRefGoogle Scholar
  23. Rothman, S. (1954)Physiology and Biochemistry of the Skin. The University of Chicago Press, Chicago & London, 61–64.Google Scholar
  24. Salerud, E. G. andNilsson, G. E. (1986) Integrating probe for tissue laser Doppler flowmeters.Med. & Biol. Eng. & Comput.,24, 415–419.CrossRefGoogle Scholar
  25. Splinter, R., Cheong, W. F., van Gemert, M. J. C. andWelch, A. J. (1989) In vitro optical properties of human and canine brain and urinary bladder tissues at 633 nm.Lasers in Surg. & Med.,9, 37–41.Google Scholar
  26. van Gemert, M. J. C., Jacoues, S. L., Sterenborg, H. J. C. M. andStar, W. M. (1989) Skin optics.IEEE Trans.,BME-36, 1146–1154.Google Scholar
  27. Welch, A. J., Yoon, G. andvan Gemert, M. J. C. (1987) Practical models for light distributions in laser-irradiated tissue.Lasers in Surg. & Med.,6, 488–493.Google Scholar
  28. Weiss, G. H., Nossal, R. andBonner, R. F. (1989) Statistics of penetration depth of photons re-emited from irradiated tissue.J. Mod. Opt.,36, 349–359.Google Scholar
  29. Wilson, B. C. andAdam, G. (1983) A Monte Carlo model for the absorption and flux distributions of light in tissue.Med. Phys.,10, 824–830.CrossRefGoogle Scholar

Copyright information

© IFMBE 1993

Authors and Affiliations

  • A. Jakobsson
    • 1
  • G. E. Nilsson
    • 1
  1. 1.Department of Biomedical Engineering, Biomedical InstrumentationLinköping UniversityLinköpingSweden

Personalised recommendations