Laser photoacoustic determination of physiological glucose concentrations in human whole blood

  • G. B. Christison
  • H. A. MacKenzie
Molecular Sensing


A glucose concentration analysis of human whole blood samples has been accomplished using pulsed laser photoacoustic spectroscopy (LPAS). Using a CO2 laser operating with μJ pulse energies, the technique has shown the required discrimination and sensitivity to determine glucose concentrations within the physiological range (18–450 mg dl−1) in whole blood samples. The sensitivity achieved with this system is comparable to that of the existing commerical enzyme-based diagnostic systems presently used in hospital clinical chemistry environments. The technique is compared with other optical methods that have recently been used for glucose determination, and its applicability for use in the development of an in vivo monitor is discussed.


Blood Glucose Infra-red laser In vitro In vivo Photoacoustic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Back, D. M., Michalska, D. F. andPolavaru, P. L. (1984) Fourier transform infrared spectroscopy as a powerful tool for the study of carbohydrates in aqueous solution.Appl. Spectrosc.,38, 173–180.CrossRefGoogle Scholar
  2. Bae, Y., Song, J. J. andKim, Y. B. (1982) Photoacoustic detection of nanosecond pulse induced optical absorption in solids.Appl. Opt.,21, 35–40.Google Scholar
  3. Bell, A. G. (1880)Am. J. Sci.,20, 305.Google Scholar
  4. Bell, A. G. (1881)Philos. Mag.,11, 510.Google Scholar
  5. Bochkov, A. F., Zaikov, G. E. andAfanasiev, V. A. (1991)Carbohydrates. VSP Books.Google Scholar
  6. Boulnois, J. (1985) Photophysical processes in recent medical laser developments: A review.Lasers Med. Sci.,1, 47–66.CrossRefGoogle Scholar
  7. Cope, M. andDelpy, D. T. (1988) System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination.Med. & Biol. Eng. & Comput.,26, 289–294.CrossRefGoogle Scholar
  8. Fischer, M. R., Fasano, D. M. andNogar, N. S. (1982) Frequency analysis of pulsed optoacoustic signals and the application to chemical analysis.Appl. Spectrosc.,36, 125–128.CrossRefGoogle Scholar
  9. Gless, U., Janatsch, G. andKruse-Jarres, J. D. (1989) Reagentless determination of glucose and other constituents in blood by ATR-FT-IR spectroscopy.Clin. Chem.,35, 1854–1857.Google Scholar
  10. Gournay, L. S. (1966) Conversion of electromagnetic to acoustic energy by surface heating.J. Acoust. Soc. Am.,40, 1322–1330.CrossRefGoogle Scholar
  11. Haas, U. andSeiler, H. (1984) The absorption behaviour of water and some organic liquids in the near infrared studied by photoacoustic spectroscopy.Z. Naturforsch.,39a, 1242–1249.Google Scholar
  12. Haas, U., Franz, J. andNimmerfall, F. (1988) Photoacoustic in-vitro investigation of human skin. InPhotoacoustic and photothermal phenomena.Hess, P. andPeizl, J. (Eds.), Springer-Verlag, Optical Sciences Series 58, 552–553.Google Scholar
  13. Helander, P. andLundstrom, I. (1980) Light scattering effects in photoacoustic spectroscopy.J. Appl. Phys.,51, 3841–3847.CrossRefGoogle Scholar
  14. Janatsch, G., Marbach, R., Heise, H. M. andKruse-Jarres, J. D. (1989) Multivariate calibration for assays in clinical chemistry using ATR infrared spectra of human blood plasma.Anal. Chem.,61, 2016–2023.CrossRefGoogle Scholar
  15. Kawabata, Y., Kamikubo, T., Imasaka, T. andIshibashi, N. (1983) Semiconductor lasers and solid state emitters as NIR light sources for photoacoustic spectroscopy. —Ibid.,55, 1420–1422.Google Scholar
  16. Kemp, W. (1975)Organic spectroscopy. Macmillan, ISBN 0 333 18153 0.Google Scholar
  17. Luft, K. F. (1943)Z. Tech. Phys.,24, 97.Google Scholar
  18. Marbach, R., Heise, H.M., Janatsch, G. andKruse-Jarres, J. D. (1989) Multivariate determination of glucose in whole blood by ATR infrared spectroscopy.Anal. Chem.,61, 2009–2015.CrossRefGoogle Scholar
  19. Marshall, W. J. (1989)Illustrated textbook of clinical chemistry. Gower Medical, London.Google Scholar
  20. Mason, W. P. (1964)Physical acoustics—principles and methods. Academic Press, Vol. 1, Part A, 359.Google Scholar
  21. Massart, D. L., Vandeginste, B. G. M., Deming, S. N., Michotte, Y. andKaufman, L. (1988)Chemometrics—a textbook. Elsevier, ISBN 0-444-42660-4.Google Scholar
  22. Mendelson, Y., Lin, B. C., Peura, R. andClermont, A. C. (1987a) Glucose concentration measurement in water using a CO2 laser based ATR method. Proceedings of Ninth Annual Conference IEEE Eng. in Medicine & Biol. Soc., Boston.Google Scholar
  23. Mendelson, Y., Lin, B. C., Peura, R. andClermont, A. C. (1987b) In-vitro blood glucose measurement using a CO2 laser based ATR technique. Proceedings of Ninth Annual Conference IEEE Eng. in Med. & Biol. Soc., Boston.Google Scholar
  24. Mendelson, Y., Lin, B. C., Peura, R. andClermont, A. C. (1988) Carbon-dioxide laser based multiple ATR technique for measuring glucose in aqueous solutions.Appl. Opt.,27, 5077–5081.CrossRefGoogle Scholar
  25. Mills, B. L., Alyea, E. C. andVan de Voort, E. R. (1986) Mid infrared spectroscopy of sugar solutions—instrumentation and analysis.Spectrosc. Lett.,19, 277–291.Google Scholar
  26. Pan, Q., Zhang, S. andZhu, S. (1988) Application of PAS to human blood. InPhotoacoustic and photothermal phenomena.Hess, P. andPelzl, J. (Eds.), Springer-Verlag, Optical Sciences Series 58, 542–545.Google Scholar
  27. Patel, C. K. N. andTam, A. C. (1981) Pulsed optoacoustic spectroscopy of condensed matter.Rev. Mod. Phys.,53, 517–550.CrossRefGoogle Scholar
  28. Pfund, A. H. (1939)Sci.,90, 326.Google Scholar
  29. Poulet, P. andChambron, J. E. J. (1985)In vivo cutaneous spectroscopy by photoacoustic detection.Med. & Biol. Eng. & Comput.,23, 585–588.Google Scholar
  30. Richterich, R. andDuawalder, H. (1971) Zur Bestimmung der Plasmaglucosekonzentration mit der Hexokinase/Glucose-6-Phosphatdehydrogenase Methode.Schweiz. med. Wschr,101, 615.Google Scholar
  31. Robertson, C. W. andWilliams, D. (1971) Lambert absorption coefficients of water in the infrared.J. Opt. Soc. Am.,61, 1316–1320.CrossRefGoogle Scholar
  32. Rosencwaig, A. (1980)Photoacoustics and photoacoustic spectroscopy. John Wiley & Sons, Chemical Analysis Series, vol. 57.Google Scholar
  33. Rosenthal, R. D., Paynter, L. N. andMackie, L. H. (1990) US Patent Application Publication WO 90/07905.Google Scholar
  34. Sadtler 1.Atlas of mid-infrared spectra. Sadtler Research Laboratories, Philadelphia, USA.Google Scholar
  35. Sadtler 2.Atlas of near-infrared spectra. Sadtler Research Laboratories, Philadelphia, USA.Google Scholar
  36. Sennhewn, B., Rohr, M., Geise, K. andKolmer, K. (1988) Penetration of topically applied drugs through human skin investigated by PAS. InPhotoacoustic and photothermal phenomena.Hess, P. andPelzl, J. (Eds.), Springer-Verlag, Optical Sciences Series 58, 548–551.Google Scholar
  37. Sigrist, M. W. (1986) Laser generation of acoustic waves in liquids and gases.J. Appl. Phys.,60, R83-R117.CrossRefGoogle Scholar
  38. Stark, E., Luchter, K. andMargoshes, M. (1986) Near infrared analysis (NIRA): a technology for quantitative and qualitative analysis.Appl. Spectrosc. Rev.,22, 335–399.Google Scholar
  39. Sullivan, B., Tam, A. C., Zapka, W. andCoufal, H. (1983) Optical probing of photoacoustic propagation for noncontact measurement of flows, temperature and chemical properties.J. de Physique,6, (10) 203–207.Google Scholar
  40. Vasko, P. D., Blackwell, J. andKoenig, J. L. (1972) Infrared and Raman spectroscopy of carbohydrates.Carbohydrate Res.,23, 407–416.CrossRefGoogle Scholar
  41. Viengerov, M. L. (1938) (In Russian.)Dokl. Akad. Nauk USSR,19, 687.Google Scholar
  42. Wilks, P. (1984) Aqueous solution analysis by internal reflection infrared spectroscopy.Eur. Spectrosc. News,55, 26–29.Google Scholar
  43. Zeller, H., Novak, P. andLandgraf, R. (1989) Blood glucose measurement by infrared spectroscopy.Int. J. Artif. Org.,12, 129–135.Google Scholar
  44. Zharov, V. P. andLetokhov, V. S. (1986)Laser optoacoustic spectroscopy. Springer-Verlag, Optical Sciences Series 37.Google Scholar

Copyright information

© IFMBE 1993

Authors and Affiliations

  • G. B. Christison
    • 1
    • 2
  • H. A. MacKenzie
    • 2
  1. 1.Critical Sciences Ltd.LondonUK
  2. 2.Department of PhysicsHeriot-Watt UniversityScotland, UK

Personalised recommendations