Advertisement

Molecular and General Genetics MGG

, Volume 248, Issue 1, pp 114–120 | Cite as

σB-dependent regulation ofgsiB in response to multiple stimuli inBacillus subtilis

  • Björn Maul
  • Uwe Völker
  • Sabine Riethdorf
  • Susanne Engelmann
  • Michael Hecker
Original Paper

Abstract

The expression of thegsiB gene ofBacillus subtilis in response to a wide variety of stress conditions was analysed, and the results provide evidence thatgsiB is subject to a σB regulation. Primer extension experiments established identical start points forgsiB transcription during growth and after the induction by heat shock, salt or ethanol stress, and glucose limitation. The sequence upstream of the transcription start point shows great similarity to the sequences of σB promoters ofB. subtilis. σB was absolutely required for the increase ingsiB mRNA level and in the synthesis rate of GsiB in response to various stimuli. Measurements of the ATP pool indicated that changes in the level of ATP might be one of the signals that regulate the activity of σB inB. subtilis.

Key words

General stress proteins gsiB  σB transcription ATP level 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alper S, Duncan L, Losick R (1994) An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor inB. subtilis. Cell 77:1–20CrossRefGoogle Scholar
  2. Belitsky BR, Shakylov RS (1980) Amount of guanosine polyphosphate and the level of stable RNA synthesis inB. subtilis cells upon inhibition of protein synthesis. Molekularnaja Biologija 14:1343–1353Google Scholar
  3. Benson AK, Haldenwang WG (1992) Characterization of a regulatory network that controls σB expression inB. subtilis. J Bacteriol 174:749–757PubMedGoogle Scholar
  4. Benson AK, Haldenwang WG (1993a) The σB promoter of theBacillus subtilis sigB operon is induced by heat shock. J Bacteriol 175:1929–1935PubMedGoogle Scholar
  5. Benson AK, Haldenwang WG (1993b)Bacillus subtilis σB is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase. Proc Natl Acad Sci USA 90:2330–2334PubMedCrossRefGoogle Scholar
  6. Boylan SA, Thomas SM, Price CW (1991) Genetic method to identify regulons controlled by nonessential elements: isolation of a gene dependent on alternate transcription factor σB ofBacillus subtilis. J Bacteriol 173:7856–7866PubMedGoogle Scholar
  7. Boylan SA, Rutherford A, Thomas SM, Price CW (1992) Activation ofBacillus subtilis transcription factor σB by a regulatory pathway responsive to stationary-phase signals. J Bacteriol 174:3695–3706PubMedGoogle Scholar
  8. Boylan SA, Redfield AR, Price CW (1993a) Transcription factor σB ofBacillus subtilis controls a large stationary-phase regulon. J Bacteriol 175:3957–3963PubMedGoogle Scholar
  9. Boylan SA, Redfield AR, Brody MS, Price CW (1993b) Stress-induced activation of the σB transcription factor ofBacillus subtilis. J Bacteriol 175:7931–7937PubMedGoogle Scholar
  10. Dufour A, Haldenwang WG (1994) Interactions between aBacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV). J Bacteriol 176:1813–1820PubMedGoogle Scholar
  11. Duncan L, Losick R (1993) SpoIIAB is an anti-sigma factor that binds to and inhibits transcription by regulatory protein σF fromBacillus subtilis. Proc Natl Acad Sci USA 90:2325–2329PubMedCrossRefGoogle Scholar
  12. Hecker M, Völker U (1990) General stress proteins inBacillus subtilis. FEMS Microbiol Ecol 74:197–214CrossRefGoogle Scholar
  13. Igo M, Losick R (1986) Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme inBacillus subtilis. J Mol Biol 191:615–624PubMedCrossRefGoogle Scholar
  14. Igo M, Lampe M, Ray C, Schafer W, Moran CP, Losick R (1987) Genetic studies of a secondary RNA polymerase sigma factor inBacillus subtilis. J Bacteriol 169:3464–3469PubMedGoogle Scholar
  15. Igo M, Lampe M, Losick R (1988) Structure and regulation of aBacillus subtilis gene that is transcribed by E σB form of RNA polymerase holoenzyme. In: Ganesan AT, Hoch JA (eds) Genetics and biotechnology of Bacilli, vol. 2. Academic Press New York, pp 151–156Google Scholar
  16. Kalman S, Duncan ML, Thomas SM, Price CW (1990) Similar organization of thesigB andspoIIA operons encoding alternate sigma factors ofBacillus subtilis RNA polymerase. J Bacteriol 172:5575–5585PubMedGoogle Scholar
  17. Kirchman PA, Degrazia H, Kellner EM, Moran CP (1993) Forespore-specific disappearance of the sigma-factor antagonist SpollAB — Implications for its role in determination of cell fate inBacillus subtilis. Mol Microbiol 8:663–671PubMedGoogle Scholar
  18. Lundin A, Thore A (1975) Comparison of methods for extraction of bacterial adenine nucleotides determined by firefly assay. Appl Microbiol 30:713–721PubMedGoogle Scholar
  19. Majumdar D, Avissar YJ, Wyche JH (1991) Simultaneous and rapid isolation of bacterial and eucaryotic DNA and RNA: a new approach for isolating DNA. BioTechniques 11:94–101PubMedGoogle Scholar
  20. Min KT, Hilditch CM, Diederich B, Errington J, Yudkin MD (1993) σF, the first compartment-specific transcription factor ofBacillus subtilis, is regulated by an anti-sigma factor that is also a protein kinase. Cell 74:735–742PubMedCrossRefGoogle Scholar
  21. Moran CP, Lang N, Losick R (1981) Nucleotide sequence of aBacillus subtilis promoter recognized byBacillus subtilis RNA polymerase containing σ37. Nuclic Acids Res 9:5979–5990Google Scholar
  22. Mueller JP, Mathiopoulos C, Slack FJ, Sonenshein AL (1991) Identification ofBacillus subtilis adaptive response genes by subtractive differential hybridization. Res Microbiol 142: 805–813PubMedCrossRefGoogle Scholar
  23. Mueller JP, Bukusoglu G, Sonenshein AL (1992) Transcriptional regulation ofBacillus subtilis glucose starvation-inducible genes — Control ofgsiA by the ComP-ComA signal transduction system. J Bacteriol 174:4361–4373PubMedGoogle Scholar
  24. Ollington JF, Haldenwang WG, Huynh TV, Losick R (1981) Developmentally regulated transcription in a cloned segment of theBacillus subtilis chromosome. J Bacteriol 147:432–442PubMedGoogle Scholar
  25. Richter A, Hecker M (1986) Heat shock proteins inBacillus subtilis. A two-dimensional electrophoresis study. FEMS Microbiol Lett 36:69–71CrossRefGoogle Scholar
  26. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain termination inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedCrossRefGoogle Scholar
  27. Smith I, Paress P, Cabane K, Dubnau E (1980) Genetics and physiology of therel system ofBacillus subtilis. Mol Gen Genet 178:271–279PubMedCrossRefGoogle Scholar
  28. Stülke J, Hanschke R, Hecker M (1993) Temporal activation of glucanase synthesis inBacillus subtilis is mediated by the GTP pool. J Gen Microbiol 39:2041–2045Google Scholar
  29. Varon D, Boylan SA, Okamoto K, Price CW (1993)Bacillus subtilis gtaB encodes UDP-Glucose-pyrophosphorylase and is controlled by stationary-phase transcription factor σB. J Bacteriol 175:3964–3971PubMedGoogle Scholar
  30. Völker U, Mach H, Schmid R, Hecker M (1992) Stress proteins and cross protection by heat shock and salt stress inBacillus subtilis. J Gen Microbiol 138:2125–2135PubMedGoogle Scholar
  31. Völker U, Engelmann S, Maul B, Riethdorf S, Völker A, Schmid R, Mach H, Hecker M (1994) Analysis of the induction of general stress proteins ofBacillus subtilis. Microbiology 140:741–752PubMedCrossRefGoogle Scholar
  32. Völker U, Dufour A, Haldenwang WG (1995) TheBacillus subtilis rsbU gene product is necessary for RsbX-dependent regulation of σB. J Bacteriol 177:114–122Google Scholar
  33. Wetzstein M, Völker U, Dedio J, Löbau S, Zuber U, Schiesswohl M, Herget C, Hecker M, Schumann W (1992) Cloning, sequencing, and molecular analysis of thednaK locus fromBacillus subtilis. J Bacteriol 174:3300–3310PubMedGoogle Scholar
  34. Wise AA, Price C (1995) Four additional genes in thesigB operon ofBacillus subtilis that control activity of the general stress factor σB in response to environmental signals. J Bacteriol 177:123–133PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Björn Maul
    • 1
  • Uwe Völker
    • 1
  • Sabine Riethdorf
    • 1
  • Susanne Engelmann
    • 1
  • Michael Hecker
    • 1
  1. 1.Institut für Mikrobiologie und MolekularbiologieUniversität GreifswaldGreifswaldGermany

Personalised recommendations