Il Nuovo Cimento D

, Volume 10, Issue 11, pp 1273–1279 | Cite as

Dynamics of free-standing films of smecticsC

  • E. I. Katz
  • V. V. Lebedev


A system of nonlinear hydrodynamics equations of freestanding films of smecticsC is obtained. The Poisson three-dimensional brackets of the hydrodynamical variables of smecticsC integrated by the width of the film are used. A spectrum of the intrinsic modes is calculated and fluctuation effects are analysed. It is shown that in the main approximation over the anisotropy of the smectic layer only fluctuations of the transverse shifts of the film resulting in the observed effects in light scattering are essential.

PACS 61.30

Liquid crystals 

PACS 64.70

Phase equilibria phase transitions and critical points of specific substances 

PACS 87.30

Biophysics of neurophysiological processes (excluding perception processes and speech) 


Si ottiene un sistema di equazioni non lineari idrodinamiche per film liberi di smetticiC. Si usano le parentesi tridimensionali di Poisson delle variabili idrodinamiche di smetticiC integrati dall’ampiezza del film. Si calcola uno spettro dei modi intrinseci e si analizzano gli effetti di fluttuazione. Si mostra che nella principale approssimazione sull’anisotropia dello strato smettico solo fluttuazioni degli spostamenti trasversali del film che risultano negli effetti osservati nello scattering della luce sono essenziali.


Получена система нелинейных уравнений гидродинамики свободноподвешенных пленок смектиковС. Используются проинтегрированные по толщине пленкм трехмерные скобки Пуассона гидродинамических переменных смектиковС. Показано, что в главном приближении по анизотропии смектического слоя существенны только флуктуации порений пленки, приводящие к наблюдаемым эффектам в рассеянии света.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. Pindak, C. Y. Young, R. B. Meyer andN. A. Clark:Phys. Rev. Lett.,45, 92 (1980).CrossRefGoogle Scholar
  2. (2).
    E. I. Katz andV. V. Lebedev:Crystallography,31, 23 (1986).Google Scholar
  3. (3).
    A. Z. Patashinskii andV. L. Pokrovskii:Fluctuation Theory of Phase Transitions (M. Nauka, Moscow, 1975), Chapter IV.Google Scholar
  4. (4).
    V. L. Berezinskii:Ž. Ėksp. Teor. Fiz.,59, 907 (1970);61, 1144 (1971);J. M. Kosterlitz andD. J. Thouless:J. Phys. C,5, 1224 (1972).Google Scholar
  5. (5).
    I. E. Dzyaloshinskii andG. E. Volovik:Ann. Phys.,69, 269 (1980).MathSciNetGoogle Scholar
  6. (6).
    I. M. Khalatnikov andV. V. Lebedev:Prog. Theor. Phys., Suppl.,69, 269 (1980).Google Scholar
  7. (7).
    E. I. Katz andV. V. Lebedev:Ž. Ėksp. Teor. Fiz.,88, 823 (1985).Google Scholar
  8. (8).
    E. M. Lifshitz andL. P. Pitaevskii:Statistical Physics, part 2 (M. Nauka, Moscow, 1978), Chapt. IX.Google Scholar
  9. (9).
    G. Y. Young andN. A. Clark:J. Chem. Phys.,74, 4171 (1981).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1988

Authors and Affiliations

  • E. I. Katz
    • 1
  • V. V. Lebedev
    • 1
  1. 1.L. D. Landau Institute for Theoretical PhysicsAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations