Advertisement

Periodica Mathematica Hungarica

, Volume 25, Issue 1, pp 105–111 | Cite as

Arithmetical progressions and the number of sums

  • I. Z. Ruzsa
Article

Mathematics subject classification numbers

1991 Primary 11A99 

Key words and phrases

Progressions number of sums 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. A. Freiman, (1966),Foundations of a Structural Theory of Set Addition (in Russian), Kazan Gos. Ped. Inst., Kazan.Google Scholar
  2. G. A. Freiman, (1973),Foundations of a Structural Theory of Set Addition, Translation of Mathematical Monographs Vol. 37, Amer. Math. Soc., Providence, R. I., USA.Google Scholar
  3. D. R. Heath-Brown, (1987), Integer sets containing no arithmetic progressions,J. London Math. Soc. 35, 385–394.zbMATHMathSciNetGoogle Scholar
  4. H. Plünnecke, (1970), Eine zahlentheoretische Anwendung der Graphtheorie,J. Reine Angew. Math. 243, 171–183.zbMATHMathSciNetGoogle Scholar
  5. H. Plünnecke, (1970), Eine zahlentheoretische Anwendung der Graphtheorie,J. Reine Angew. Math. 243, 171–183.zbMATHMathSciNetGoogle Scholar
  6. I. Z. Ruzsa, (1978), On the cardinality of A+A and A−A, in:Coll. Math. Soc. J. Bolyai 18, Combinatorics, Keszthely 1976, North-Holland-Bolyai Társulat, Budapest (1978), 933–938.Google Scholar
  7. I. Z. Ruzsa (1989), An application of graph theory to additive number theory,Scientia, Ser A 3 97–109.zbMATHGoogle Scholar
  8. E. Szemerédi, (1975), On sets of integers containing nok-elements in arithmetic progression,Acta Arithmetica 27, 299–345.Google Scholar
  9. E. Szemerédi, (1990), Integer sets containing no arithmetic progressions,Acta Math. Acad. Sci. Hungar. 56, 155–158.zbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • I. Z. Ruzsa
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations