Advertisement

Il Nuovo Cimento D

, Volume 12, Issue 10, pp 1405–1421 | Cite as

Nipponites Mirabilis—A challenge to seashell theory?

  • C. Illert
Article

Summary

Our earlier foundation paper for the new science ofTheoretical Conchology presented a general theoryexplaining seashell growth trajectories in terms of optimal, energy-efficient, tensile «clockspring» curves satisfying Hamilton's «least-action» principle. Meanwhile, working in isolation and publishing in Japanese, after the tradition of Wasan, Takashi Okamoto presented precise measurements and uncannily accurate 3D curveguesses which provide a finedescription of several bizarre, and previously little understood, «free-coiling» heteromorphic ammonites. One of these,Nipponites mirabilis, is so bizarre and wild that it provides the first good test of our new general theory. We are able to demonstrate that, merely by choosing the two fundamental constants of differential geometry to be complex numbers, our standard «clockspring” curves adequatelydescribe andexplain these geometries though one small improvement is possible. Even more surprising, considering the sheer wildness of the geometries, is the fact that Okamoto's guessed 3D «spheroidal» shapes agree with our correct, more general, «Lissajous» counterparts to several significant figures … a remarkable feat of precise measurement and intuition, on Okamoto's part, perhaps in its own way comparable to the achievements of Tycho Brahae and Johannes Keppler.

PACS 87.10

General, theoretical and mathematical biophysics (including logic of biosystems, quantum biology and relevant aspects of thermodynamics, information theory, cybernetics and bionics) 

PACS 46.30.Cn

Static elasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Moseley:Philosophical Transactions of the Royal Society (Lond.), Vol.128 (1838), p. 351;Philos. Mag., series 3,21, (138), 300 (1842).ADSGoogle Scholar
  2. [2]
    J. F. Blake:Philos. Mag., series 5,6, 241 (1878).Google Scholar
  3. [3]
    B. Pettigrew:Design in Nature, multiple volume text (1908).Google Scholar
  4. [4]
    D. W. Thompson:On Growth & Form (Cambridge University Press, 1917).Google Scholar
  5. [5]
    The American Mathematical Monthly,25, 189 (1918).Google Scholar
  6. [6]
    J. Swammerdam: «Biblia Naturae … Book of nature … with the life of the author by Herman Boerhave», original Dutch & Latin edition byT. Flloyd. New edition by J. Hill of London (1758).Google Scholar
  7. [7]i)
    C. F. Naumann:Ann. Phys. (Leipzig),50, 223 (1840); ii)51, 245 (1840); iii)64, 538 (1845).Google Scholar
  8. [8]
    Haton de la Goupilliere:Annaes Scientificos da academia polytechnica do Porto (Coïmbra), Vol. iii(1), 5 (1908); Vol. iii(2), 69 (1908); Vol. iii(3), 133 (1908).Google Scholar
  9. [9]
    F. Gomes Teixeira:Traité des courbes spéciales remaequables, Tome2, Coïmbre, de l'Université: pp 76–86, 396–399, etc. (1909).Google Scholar
  10. [10]i)
    L. Lison:Bull. Acad. R. Belg. Cl. Sci.,28, 377 (1942), ii)Mem. Inst. R. Sci. Nat. Belg., ser. 2,34, 1 (1949).Google Scholar
  11. [11]
    H. Cintra andH. de Souza Lopez:Rev. Bras. de Biol.,12, 185 (1952).Google Scholar
  12. [12]
    T. Fukutomi:Hokkaido Univ. Geophys. Bull.,3, 63 (1952), in Japanese.Google Scholar
  13. [13]
    C. Illert:Sci. Austr.,4, 35 (1980).Google Scholar
  14. [14]
    G. Grandi:Geometria Demonstratio Theorematum Hugenianorum circa Logisticam seu Logarithmicam Lineam … (Florentiae, 1701).Google Scholar
  15. [15]i)
    C. Illert:Seashell Mathematics (Griffin Press, Adelaide, 1976) ii)Mathematical Biosciences,63, 21 (1983).Google Scholar
  16. [16]
    M. M. Lipschutz:Differential Geometry, Schaum's Outline Series (McGraw Hill Co., New York, N.Y., 1969). See Chapt. 5, p. 80.Google Scholar
  17. [17]
    M. P. Do Carmo:Differential Geometry of Curves & Surfaces (Prentice Hall, Englewood Cliffs, N.J., 1976). See p. 16.Google Scholar
  18. [18]
    P. Serret:Théorie nouvelle géométrique et mécanique des lignes à double courbure (1860). See p. 101 etc.Google Scholar
  19. [19]
    C. Illert:Introduction to Theoretical Conchology, A (Adelaide University, 1978).Google Scholar
  20. [20]
    C. C. ten Hallers-Tjabbes:Thesis (University of Groningen, 1979).Google Scholar
  21. [21]
    W. F. Bronsvoort andF. Klok ACM Transactions on Graphics,4, 291 (1985).CrossRefGoogle Scholar
  22. [22]
    C. Illert:Nuovo Cimento D,9, 791 (1987).MathSciNetGoogle Scholar
  23. [23]
    C. Illert:Nuovo Cimento D,11, 761 (1989).MathSciNetGoogle Scholar
  24. [24]
    T. Okamoto:Palaeontol. Soc. Jpn.,36, 37 (1984). In Japanese.MathSciNetGoogle Scholar
  25. [25]
    T. Okamoto:Palaeontology,31, 35 (1988).Google Scholar
  26. [26]
    T. Okamoto:Palaeontology,31, 281 (1988).Google Scholar
  27. [27]
    T. Okamoto:Paleobiology,14, 272 (1988).Google Scholar
  28. [28]
    C. Illert:General theory of ultra-thin elastic conoids, in press (1990).Google Scholar
  29. [29]
    A. M. Wahl:Mechanical Springs (Penton Publishers, Cleveland, OH, 1944).Google Scholar
  30. [30]
    J. A. van der Broek:Am. Soc. Mech. Eng.,53, 247 (1931).Google Scholar
  31. [31]
    C. L. & M. A. Fenton:The Fossil Book (Doubleday Co., 1958).Google Scholar
  32. [32]
    R. H. Warring:Spring Design & Calculation (M.A.P. publications, England, 1973).Google Scholar

Copyright information

© Società Italiana di Fisica 1990

Authors and Affiliations

  • C. Illert
    • 1
  1. 1.Department of Theoretical ConchologyThe Science-Art CentreSemaphore ParkAustralia

Personalised recommendations