CLT and other limit theorems for functionals of Gaussian processes

  • L. Giraitis
  • D. Surgailis
Article

Summary

Conditions for the CLT for non-linear functionals of stationary Gaussian sequences are discussed, with special references to the borderline between the CLT and the non-CLT. Examples of the non-CLT for such functionals with the norming factor\(\sqrt N \) are given.

References

  1. 1.
    Bentkus, R.: Cumulants of polylinear forms of a stationary time series (in Russian). Lietuvos matematikos rinkinys17, 27–46 (1977)MATHMathSciNetGoogle Scholar
  2. 2.
    Breuer, P., Major, P.: Central limit theorem for non-linear functionals of Gaussian fields. J. Multivariate Anal.13, 425–441 (1983)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Brillinger, D.R.: Time series. Data analysis and theory. New York: Holt, Rinehart and Winston 1975MATHGoogle Scholar
  4. 4.
    Dobrushin, R.L.: Gaussian and their subordinated self-similar random generalized fields. Ann. Probab.7, 1–28 (1979)MATHMathSciNetGoogle Scholar
  5. 5.
    Dobrushin, R.L., Major, P.: Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheor. Verw. Gebiete50, 27–52 (1979)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Giraitis, L.: Limit theorems for subordinated processes. Dissertation, Vilnius, 1984Google Scholar
  7. 7.
    Giraitis, L.: Central limit theorem for functionals of linear processes (in Russian). Lietuvos matematikos rinkinys25, 43–57 (1985)MathSciNetGoogle Scholar
  8. 8.
    Gorodeckii, V.V.: The invariance principle for functions of stationary connected Gaussian variables (in Russian). Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova (LOMI)97, 34–44 (1980)MathSciNetGoogle Scholar
  9. 9.
    Ibragimov, I.A.: Some limit theorems for stationary processes. Teor. Verojatn. Primen.7, 361–395 (1962)MATHGoogle Scholar
  10. 10.
    Ibragimov, I.A., Linnik, J.V.: Independent and stationary sequences of random variables. Gröningen: Walters-Noordhoff 1971MATHGoogle Scholar
  11. 11.
    Ito, K.: Multiple Wiener integral. J. Math. Soc. Japan,3, 157–164 (1951)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Major, P.: Limit theorems for non-linear functionals of Gaussian sequences. Z. Wahrscheinlichkeitstheor. Verw. Gebiete57, 129–158 (1981)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Major, P.: Multiple Wiener-Ito integrals. Lecture Notes Math.849, Berlin-Heidelberg-New York: Springer 1981MATHGoogle Scholar
  14. 14.
    Malyshev, V.A.: Cluster expansions in lattice models of statistical physics and quantum field theory (in Russian). Usp Mat. Nauk.35, 3–53 (1980)MathSciNetGoogle Scholar
  15. 15.
    Maruyama, G.: Non-linear functionals of Gaussian processes and their applications. In: Proceeding of the Third Japan-USSR Sympos. Probab. Theory (Tashkent 1975). Lecture Notes Math.550, 375–378. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  16. 16.
    Maruyama, G.: Applications of Wiener's expansions to some probability limit theorems. In: Third International Vilnius Conference of Probab. Theory and Math. Stat., Vilnius 1981Google Scholar
  17. 17.
    Plikusas, A.: A: Some properties of the multiple Ito integrals (in Russian). Lietuvos matematikos rinkinys21, 163–173 (1981)MATHMathSciNetGoogle Scholar
  18. 18.
    Rosenblatt, M.: Independence and dependence. Proc. 4th Berkeley Sympos. Math. Statist. Probab. pp. 411–443. Berkeley: Univ. Calif. Press 1961Google Scholar
  19. 19.
    Rosenblatt, M.: Some limit theorems for partial sums of quadratic forms in stationary Gaussian variables. Z. Wahrscheinlichkeitstheor. Verw. Gebiete49, 125–132 (1979)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Rosenblatt, M.: Limit theorems for Fourier transforms of functionals of Gaussian sequences. Z. Wahrscheinlichkeitstheor. Verw. Gebiete55, 123–132 (1981)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Rubin, H., Vitale, R.A.: Asymptotic distribution of symmetric statistics. Ann Math. Stat.8, 165–170 (1980)MATHMathSciNetGoogle Scholar
  22. 22.
    Sun, T.: Some further results on central limit theorems for non-linear functions of normal stationary process. J. Math. and Mech.14, 71–85 (1965)MATHMathSciNetGoogle Scholar
  23. 23.
    Surgailis, D.: OnL 2 and non-L 2 multiple stochastic integrals. In: Lecture Notes Control. Inf. Sci.36, 212–226 (1981)Google Scholar
  24. 24.
    Taqqu, M.S.: Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheor. Verw. Gebiete50, 53–83 (1979)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Zygmund, A.: Trigonometric series (2nd ed) Cambridge: Cambridge University Press 1968Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • L. Giraitis
    • 1
  • D. Surgailis
    • 1
  1. 1.Institute of Mathematics and CyberneticsVilniusUSSR

Personalised recommendations