Intersections and limits of regenerative sets

  • P. J. Fitzsimmons
  • Bert Fristedt
  • B. Maisonneuve
Article

Summary

Regenerative subsets of ℝ constitute an analog of classical renewal processes. Limits and intersections of independent regenerative sets are discussed. These ideas are related to the usual quantities associated with subordinators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Billingsley, P.: Convergence of probability measures. New York: Wiley 1968Google Scholar
  2. 2.
    Blumenthal, R.M., Getoor, R.K.: Markov processes and potential theory. New York-London: Academic Press 1968Google Scholar
  3. 3.
    Fristedt, B.E.: Sample functions of stochastic processes with stationary independent increments. In Advances in Probability, 3, New York: Marcel Dekker 1974Google Scholar
  4. 4.
    Fristedt, B.E.: The central limit problem for, infinite products of, and Levy processes of renewal sequences. Z. Wahrscheinlichkeitstheor. Verw. Geb.58, 479–507 (1981)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hawkes, J.: Intersections of Markov random sets. Z. Wahrscheinlichkeitstheor. Verw. Geb.37, 243–251 (1977)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Hoffmann-Jørgensen, J.: Markov sets. Math. Scand.24, 145–166 (1969)MathSciNetGoogle Scholar
  7. 7.
    Kendall, D.G.: Delphic semigroups, infinitely divisible regenerative phenomena and the arithmetic ofp-functions. Z. Wahrscheinlichkeitstheor. Verw. Geb.9, 163–195 (1968)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Kendall, D.G.: Foundations of a theory of random sets. In Stochastic Geometry. pp. 322–376. London-New York: Wiley 1974Google Scholar
  9. 9.
    Kingman, J.F.C.. Regenerative phenomena. London-New York: Wiley 1972Google Scholar
  10. 10.
    Krylov, N.V., Yushkevich, A.A.: Markov random sets. Trans. Mosc. Math. Soc.13, 127–153 (1965)MATHGoogle Scholar
  11. 11.
    Maisonneuve, B.: Ensembles régénératifs, temps locaux et subordinateurs. In Sèminaire de Probabilités V, Lecture Notes in Mathematics191. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  12. 12.
    Maisonneuve, B.: Systemes régénératifs. Astérisque15, Société Mathématique de France 1974Google Scholar
  13. 13.
    Maisonneuve, B.: Changement de temps d'un processus markovien additif. In Séminaire de Probabilités XI. Lecture Notes in Mathematics581. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  14. 14.
    Maisonneuve, B.: Ensembles régénératifs de la droite. Z. Wahrscheinlichkeitstheor. Verw. Geb.63, 501–510 (1983)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Matheron, G.: Random sets and integral geometry. London-New York. Wiley 1975Google Scholar
  16. 16.
    Meyer, P.A.: Ensembles régéneratifs, d'après Hoffmann-Jørgensen. In Séminaire de Probabilités IV. Lecture Notes in Mathematics124. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  17. 17.
    Taksar, M.I.: Regenerative sets on real line. In Séminaire de Probabilités XIV. Lecture Notes in Mathematics784. Berlin-Heidelberg-New York: Springer 1980Google Scholar
  18. 18.
    Kesten, H.: Hitting probabilities of single points for processes with stationary independent increments. Mem. Am. Math. Soc.93, (1969)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • P. J. Fitzsimmons
    • 1
  • Bert Fristedt
    • 2
  • B. Maisonneuve
    • 3
  1. 1.Department of Mathematical SciencesUniversity of AkronAkronUSA
  2. 2.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  3. 3.I.M.S.S.Grenoble CedexFrance

Personalised recommendations