Advertisement

General Relativity and Gravitation

, Volume 5, Issue 5, pp 603–613 | Cite as

The nut solution as a gravitational dyon

  • J. S. Dowker
Research Articles

Abstract

Linearized theory suggests that the NUT solution of Einstein's equations corresponds to a source with both mass and dual mass i.e. to a gravitational dyon. This is born out by the striking identity between the Killing operators of the NUT solution and the ‘total angular momentum’ operators of the monopole. On this basis, Misner's periodic time condition is shown to be the analogue of the Dirac quantization, and results from the requirement that the generators integrate to a global Lie group. It is also shown that there are no bound states for a Klein-Gordon field in NUT space provided the field vanishes in the conventional way at the horizon. For this purpose a generalized ‘tortoise coordinate’ is introduced.

Keywords

Quantization Rule Dirac Quantization Tortoise Coordinate Dual Mass Exact Quantization Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Newman, E., Tamburino, L. and Unti, T. (1963).J. Math. Phys.,4, 915.zbMATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Misner, C.W. (1963).J. Math. Phys.,4, 924.MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Bonnor, W.B. (1969).Proc. Camb. Phil. Soc.,66, 145.zbMATHMathSciNetADSGoogle Scholar
  4. 4.
    Grönblom, B.O. (1935).Z. Phys.,98, 283.zbMATHCrossRefADSGoogle Scholar
  5. 5.
    Jordan, P. (1938).Ann. d. Phys.,32, 66.zbMATHADSGoogle Scholar
  6. 6.
    Dowker, J.S. and Roche, J.A. (1967).Proc. Phys. Soc.,92, 1.CrossRefGoogle Scholar
  7. 7.
    Demianski, M. and Newman, E.T. (1966).Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,14, 653.zbMATHGoogle Scholar
  8. 8.
    Barut, A.O. (1971).Phys. Rev.,D3, 1747.ADSGoogle Scholar
  9. 9.
    Sackfield, A. (1971).Proc. Camb. Phil. Soc.,70, 89.CrossRefGoogle Scholar
  10. 10.
    Taub, A. (1951).Ann. Math.,53, 472.zbMATHMathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Misner C.W. and Taub, A.H. (1968).Zh. Eksper. Teor. Fiz.,55, 233.Google Scholar
  12. 12.
    Dirac, P.A.M. (1931).Proc. Roy. Soc.,A133, 60.ADSGoogle Scholar
  13. 13.
    Wentzel, G. (1966).Prog. Theor. Phys. Suppl.,37–38, 163.Google Scholar
  14. 14.
    Fierz, M. (1944).Helv. Phys. Acta,17, 27.zbMATHMathSciNetGoogle Scholar
  15. 15.
    Hurst, C.A. (1968).Ann. Phys.,50, 51.zbMATHCrossRefADSGoogle Scholar
  16. 16.
    Miller, W. (1968).Lie Theory and Special Functions, (Academic Press, New York).zbMATHGoogle Scholar
  17. 17.
    Hermann, R. (1968).Differential Geometry and The Calculus of Variations, (Academic Press, New York).zbMATHGoogle Scholar
  18. 18.
    Vilenkin, N.J. (1968).Special Functions and The Theory of Group Representations, (A.M.S., Providence, R.I.).zbMATHGoogle Scholar
  19. 19.
    Teitelboim, C. (1972).Phys. Rev.,D5, 2941.MathSciNetADSGoogle Scholar
  20. 20.
    Price, R.H. (1972).Phys. Rev.,D5, 2419.MathSciNetADSGoogle Scholar
  21. 21.
    Schwinger, J. (1966).Phys. Rev.,144, 1087.MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    Feinblum, D.A. (1970).J. Math. Phys.,11, 2713.zbMATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Plenum Publishing Company Limited 1974

Authors and Affiliations

  • J. S. Dowker
    • 1
  1. 1.Department of Theoretical PhysicsThe University of ManchesterManchester 13

Personalised recommendations