General Relativity and Gravitation

, Volume 2, Issue 1, pp 43–51 | Cite as

Magnetic charge, holonomy and characteristic classes: Illustrations of the methods of topology in relativity

  • C. J. S. Clarke


Spin Structure Cohomology Class Chern Class Magnetic Charge Lorentz Group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Geroch, R. (1968).J. Math. Phys.,9, 1739 and (1970),11, 343.MATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Aharanov, Y. and Susskind, L. (1967).Phys. Rev.,158, 1273. Hegerfled, E. C. and Kraus, K. (1968).Phys. Rev.,170, 1185. Dowker, J. S. (1969).J. Phys. A. (2)2, 267.Google Scholar
  3. 3.
    Steenrod, N. (1951).The Topology of Fibre Bundles. Princeton University Press.Google Scholar
  4. 4.
    Milnor, J. (1957).Lectures on Characteristics Classes. Princeton University (mimeographed notes).Google Scholar
  5. 5.
    Clarke, C. J. S. (1970).Proc. Roy. Soc. Lond. A.,314, 417.MATHADSCrossRefGoogle Scholar
  6. 6.
    Hu, Sz.-T. (1959).Homotopy Theory. Academic Press.Google Scholar
  7. 7.
    Gel'fand I. M., Minlos, R. A. and Shapiro, Z. Ya. (1963).Representations of the Rotation and Lorentz Groups and their Applications. Pergamon.Google Scholar
  8. 8.
    Hirzebuch, F. (1956).Neue Topologische Methoden in der algebraichschen Geometrie. Springer Verlag.Google Scholar
  9. 9.
    Augustine of Hipo (1963).De Civitate Dei contra Paganos Book V. Loeb.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1971

Authors and Affiliations

  • C. J. S. Clarke
    • 1
  1. 1.Dept. of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridge

Personalised recommendations