General Relativity and Gravitation

, Volume 2, Issue 1, pp 7–21 | Cite as

Topology and cosmology

  • G. F. R. Ellis


Fundamental Form Discrete Subgroup Bianchi Type Cauchy Surface Transitive Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Whitney, H. (1936).Annals of Maths.,37, 645, 865.zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Geroch, R. (1968).J. Math. Phys.,9, 1739.zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Kobayashi, S. and Nomizu, K. (1963).Foundations of Differential Geometry, Interscience, New York.zbMATHGoogle Scholar
  4. 4.
    Steenrod, N. (1951).The Topology of Fibre Bumllkes, Princeton.Google Scholar
  5. 5.
    Markus, L. (1955).Annals of Maths.,62, 411.zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Fierz, M. and Jost, R. (1965).Rev. Phys. Act.,38, 137.zbMATHGoogle Scholar
  7. 7.
    Bass, R. and Witten, L. (1957).Rev. Mod. Phys.,29, 452.MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Geroch, R. (1967).J. Math. Phys.,8, 782.zbMATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Kronheimer, E. and Penrose, R. (1967).Proc. Camb. Phil. Soc.,63, 481.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Penrose, R. (1968). ‘Structure of Space-Time’. InBattelle Rencontress (Ed. C. de Witt and J. Wheeler), Benjamin, New York.Google Scholar
  11. 11.
    Hawking, S. (1968).Proc. Roy. Soc. A,308, 433.ADSGoogle Scholar
  12. 12.
    Geroch, R. (1967). Ph.D. Thesis, Princeton University.Google Scholar
  13. 13.
    Teldovich, Ya. B. and Novikov, I. D. (1967).J.F.T.P. Letter,6, 236.ADSGoogle Scholar
  14. 14.
    Markus, L. (1965).Rev. Roum. Math. Pures et Appl.,X, 1089.MathSciNetGoogle Scholar
  15. 15.
    Lichnérowicz, A. InBattelle Rencontres (see [10]) (.Google Scholar
  16. 16.
    Aharonov, Y. and Susskind, I. (1967).Phys. Rev.,158, 1237.CrossRefADSGoogle Scholar
  17. 17.
    Bichteler, K. (1968).J. Math. Phys.,9, 813.zbMATHCrossRefADSGoogle Scholar
  18. 18.
    Geroch, R. (1970).J. Math. Phys.,11, 343.zbMATHCrossRefADSGoogle Scholar
  19. 19.
    Clarke, C. J. S. (1970).Proc. Roy. Soc. A,314, 417.zbMATHADSGoogle Scholar
  20. 20.
    Hawking, S. W. and Ellis, G. F. R. (1968).Ap. J.,152, 25. See also a forthcoming book to be published by the Cambridge University Press.CrossRefADSGoogle Scholar
  21. 21.
    Ellis, G. F. R. (1969). Lectures at International School of Physics, Varenna, Corso XI. VII (to be published).Google Scholar
  22. 22.
    Wolf, J. A. (1967),Spaces of Constant Curvature, McGraw-Hill, New York.zbMATHGoogle Scholar
  23. 23.
    Auslander, I. and Markus, I. (1958).Memoir 30, American Math. Soc.Google Scholar
  24. 24.
    Calabi, E. and Markus, I. (1962).Annals of Maths.,75, 63.zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Schroedinger, F. (1956),Anpanding Universes, Cambridge University Press.Google Scholar
  26. 26.
    Heckmann, O. and Schucking, E. (1959). ‘Newtonsche und Einsteinsche Kosmologie’,Handbuch d. Physik,LIII, 489: (1962), ‘Relativistic Cosmology’. InGravitation. (Ed. L. Witten). Wiley, New York.ADSGoogle Scholar
  27. 27.
    Robertson, H. P. (1933).Rev. Mod. Phys.,5, 62.zbMATHCrossRefADSGoogle Scholar
  28. 28.
    Bondi, H. (1960).Cosmology, Cambridge University Press.Google Scholar
  29. 29.
    Killing, W. (1891).Math. Annalen,39, 257.zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Klein, F. (1928),Vorlesungen uber Nicht-Euklidische Geometrie, Springer.Google Scholar
  31. 31.
    Rinow, W. (1961).Die Innere Geometrie der Metrischem Räume, Springer.Google Scholar
  32. 32.
    Ellis, G. F. R. and MacCallum, M. A. H. (1969).Comm. Math. Phys.,12, 108.zbMATHMathSciNetCrossRefADSGoogle Scholar
  33. 33.
    Schmidt, B. (1969).Comm. Math. Phys.,15, 329.MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Ellis, G. F. R. (1967).J. Math. Phys.,8, 1171.CrossRefADSGoogle Scholar
  35. 35.
    Lobell, F. (1931). Ber. Verhand. Sächs. Akad. Wiss. Leipzig,Math. Phys., Kl., 83, 167.Google Scholar
  36. 36.
    Garner, C. (1970).Proc. Roy. Soc. A,316, 441.zbMATHMathSciNetADSGoogle Scholar
  37. 37.
    Yano, K. and Bochner, S. (1953). ‘Curvature and Betti Numberg'sAnnals of Maths Study No. 32, Princeton University PressGoogle Scholar
  38. 38.
    Kantowski, R. and Sachs, R. K. (1966).J. Math. Phys.,7, 443.MathSciNetCrossRefADSGoogle Scholar
  39. 39.
    MacCallum, M. A. H. and Ellis, G. F. R. (1970).Comm. Math. Phys.,19, 31.zbMATHMathSciNetCrossRefADSGoogle Scholar
  40. 40.
    Misner, C. W. (1969).Phys. Res. Lett.,22, 1071; (1970). Article inRelativity, Plenum PresszbMATHCrossRefADSGoogle Scholar
  41. 41.
    Solheim, J. E. (1968).Nature,217, 41, and (1968),219, 45; see also Dehnen H. and Hönl, H. (1968).Naturwissenschaft,55, 413; Reinhardt, M. Von. (1969),Naturwissenschaft,56, 323; Petrosian, V. and Ekers, R. D., (1969).Nature,224, 484.CrossRefADSGoogle Scholar
  42. 42.
    Audretsch, J. and Dehnen, H. (1969).Astron. and Astrophys.,3, 252.ADSGoogle Scholar
  43. 43.
    Kundt, W. (1967).Comm. Math. Phys.,4, 143.zbMATHCrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Sachs, R. K. and Wolfe, A. M. (1967).Ap. J.,147, 73.CrossRefADSGoogle Scholar
  45. 45.
    Rees, M. (1969). Lectures at Varenna, see [21]. —.Google Scholar
  46. 46.
    Rees, M. and Sciama, D. W. (1968).Nature,217, 511.CrossRefADSGoogle Scholar
  47. 47.
    Kantowski, R. (1969).Ap. J.,155, 89.CrossRefADSGoogle Scholar
  48. 48.
    Kundt, W. (1968). ‘Recent Progress in Cosmology’,Springer Tracts in Modern Physics,47, Springer.Google Scholar
  49. 49.
    Hawking, S. W. and Penrose, R. (1970).Proc. Roy. Soc. A,314, 529.zbMATHMathSciNetADSGoogle Scholar
  50. 50.
    Geroch, R. (1968).J. Math. Phys.,9, 450; (1968).Annals of Physics,48, 526: (1970). Article inRelativity, Plenum Press.zbMATHMathSciNetCrossRefADSGoogle Scholar
  51. 51.
    Schmidt, B. Gwatt conference talk.Google Scholar
  52. 52.
    Geroch, R. (1970).J. Math. Phys.,11, 437.MathSciNetCrossRefzbMATHADSGoogle Scholar
  53. 53.
    Seifert, H. J. (1967).Comm. Math. Phys.,4, 324: (1967).Zs. fur Naturfor.,22a, 1356; Ph. D. Thesis. Hamburg University (1968).MathSciNetCrossRefADSGoogle Scholar
  54. 54.
    Boyer, R. H. (1964).Nuoro Cimento,33, 345.zbMATHMathSciNetGoogle Scholar
  55. 55.
    Misner, C. W. (1967). InLectures in Applied Maths, Vol. 8 (Ed. J. Ehlers, Am. Math. Soc.).Google Scholar
  56. 56.
    Einstein, A. InThe Principle of Relativity, Dover Publications Reprint (New York).Google Scholar
  57. 57.
    Avez, A. (1962).C.R. Acad. Sci. t. 254, 3984; Thesis, University of Paris Faculty of Science (1964). See also Deminaski, M. and Woronowicz, S. (1967).Bull. Acad. Polon. Sci.,XV, 355.zbMATHMathSciNetGoogle Scholar
  58. 58.
    Milnor, J. (1963). ‘Morse Theory’,Annals of Maths Studies, No. 51, Princeton University Press.Google Scholar
  59. 59.
    Sciama, D. W. (1969). Lectures at Varenna, see [21]. —.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1971

Authors and Affiliations

  • G. F. R. Ellis
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsCambridge

Personalised recommendations