Single-fibre laser Doppler flowmetry

A method for deep tissue perfusion measurements
  • E. Göran Salerud
  • P. Åke Öberg


A laser Doppler flowmeter with one optical fibre guiding light to and from the tissue under study has been developed. The outer diameter of the probe equals the optical fibre diameter (0·5 mm). The small size makes it useful for studying the deep tissue perfusion in organs. Differential-channel operation was compared with the single-channel operation and the benefit of this technique was evaluated theoretically as well as in a fluid model resembling tissue perfusion. The signal-to-noise improvement ratio was calculated and found to be related to the number of coherence areas detected and to the broadband noise of the laser. In vivo experiments in the gastrocnemius muscle of the pig were performed to compare the results from the single-fibre technique with those of the electromagnetic flowmeter. Linear regression analysis of femoral blood flow data obtained with the electromagnetic flowmeter and local muscle blood flow measured with the single-fibre technique showed a correlation coefficient of 0·88 (n=36, p<0·001).


Deep tissue perfusion Differential channel LDF Single fibre 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, T., Heisey, S. R., Smith, M. C., Steinmetz, M. A., Hartman, J. C. andFry, H. K. (1980) Thermodynamic technique for the quantification of regional blood flow.Am. J. Physiol.,238, H682-H696.Google Scholar
  2. Adams, T., Spielman, W. S., Holmes, K. R., Heisey, S. R. andChen, M. M. (1985) Proposed methods for the measurement of regional renal blood flow using heat transfer analysis.Ann. Biomed. Eng.,13, 237–258.Google Scholar
  3. Barcroft, H., Bock, K. D., Hensel, H. undKitchin, A. H. (1955) Die Muskeldurchblutung des Menschen bei indirekter Erwärmung und Abkühlung.Pflügers Arch. ges. Physiol.,261, 199–210.CrossRefGoogle Scholar
  4. Berne, B. J. andPecora, R. (1979) The light-scattering experiment. InDynamic light scattering. John Wiley & Sons Inc., New York, 38–52.Google Scholar
  5. Bonner, R. andNossal, R. (1981) Model for laser Doppler measurements of blood flow in tissue.Appl. Optics,20, 2097–2107.Google Scholar
  6. Cummins, H. Z. andSwinney, H. L. (1970) Light beating spectroscopy. InProgress in optics.Wolf, E. (Ed.), North-Holland, Amsterdam, The Netherlands, Vol. 8, 133–200.Google Scholar
  7. Damber, J.-E., Lindahl, O., Selstam, G. andTenland, T. (1983) Rhythmical oscillations in rat testicular microcirculation as recorded by laser Doppler flowmetry.Acta Physiol. Scand.,118, 117–123.Google Scholar
  8. Dyott, R. B. (1978) The fibre-optic Doppler anemometer.Microwaves, Optics & Acoustics,2, 13–18.Google Scholar
  9. Fagrell, B. (1984)Microcirculation of the skin. InThe physiology and pharmacology of the microcirculation.Mortillaro, N. A. (Ed.), Academic Press Inc., Vol. 2, 133–180.Google Scholar
  10. Grängsjö, G., Sandblom, J., Ulfendahl, H. R. andWolgast, M. (1966) Theory of the heated thermocouple principle.Acta Physiol. Scand.,66, 366–373.Google Scholar
  11. Grant, R. T. (1938) Observations on the blood circulation in voluntary muscle in man.Clin. Sci.,3, 157–173.Google Scholar
  12. Grayson, J. (1958) The application of internal calotimetry to the measurement of liver blood flow responses. InLiverfunction.Brauer, R. W. (Ed.), Am. Inst. Biol. Sci., Washington DC, 106–112.Google Scholar
  13. Hensel, H. undBender, F. (1956) Fortlaufende Bestimmung der Hautdurchblutung am Menschen mit einem elektrischen Wärmeleitmesser.Pflügers Arch. ges. Physiol.,263, 603–614.CrossRefGoogle Scholar
  14. Heymann, M. A., Payne, B. D., Hoffman, J. I. E. andRudolph, A. M. (1977) Blood flow measurements with radionuclide-labeled particles.Progr. Cardiovasc. Dis.,20, 55–79.Google Scholar
  15. Holloway, G. A. Jr. (1980) Cutaneous blood flow responses to injection trauma measured by laser Doppler velocimetry.J. Invest. Dermatol.,74, 1–4.CrossRefGoogle Scholar
  16. Holti, G. andMitchell, K. W. (1978) Estimation of the nutrient skin blood flow using a segmented thermal clearance probe.Clin. Exp. Dermatol.,3, 189–198.CrossRefGoogle Scholar
  17. Ivanov, K. P., Kalinina, M. K. andLevkovich, Yu. I. (1985) Microcirculation velocity changes under hypoxia in brain, muscles, liver, and their physiological significance.Microvasc. Res.,30, 10–18.CrossRefGoogle Scholar
  18. Kajiya, F., Hoki, N., Tomonaga, G. andNishihara, H. (1981) A laser-Doppler velocimeter using an optical fiber and its application to local velocity measurement in the coronary artery.Experientia,37, 1171–1173.CrossRefGoogle Scholar
  19. Kajiya, F., Tomonaga, G., Tsujioka, K., Ogasawara, Y. andNishihara, H. (1985) Evaluation of local blood flow velocity in proximal and distal coronary arteries by laser Doppler method.J. Biomech. Eng.,107, 10–15.CrossRefGoogle Scholar
  20. Kilpatrick, D., Tyberg, J. V. andParmley, W. W. (1982) Blood velocity measurement by fiber optic laser Doppler anemometry.IEEE Trans., BME-29, 142–145.Google Scholar
  21. Kramer, K. undQuensel, W. (1937) Untersuchungen über den Muskelstoffwechsel des Warmblüters. I. Mitteilung. Der Verlauf der Muskeldurchblutung während der tetanischen Kontraktion.Pflügers Arch. ges. Physiol.,239, 620–643.CrossRefGoogle Scholar
  22. Lassen, N. A., Lindbjerg, J. andMunck, O. (1964) Measurement of blood-flow through skeletal muscle by intramuscular injection of Xenon-133.Lancet,1, 686–689.CrossRefGoogle Scholar
  23. Lindbom, L. (1983) Microvascular blood flow distribution in skeletal muscle. An intravital microscopic study in the rabbit. Thesis.Acta Physiol. Scand., Suppl. 525.Google Scholar
  24. Nilsson, G. E., Tenland, T. andÖberg, P.-Å. (1980a) A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy.IEEE Trans., BME-27, 12–19.Google Scholar
  25. Nilsson, G. E., Tenland, T. andÖberg, P.-Å. (1980b) Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow., BME-27, 597–604.Google Scholar
  26. Nilsson, G. E. (1984) Signal processor for laser Doppler tissue flowmeters.Med. & Biol. Eng. & Comput.,22, 343–348.CrossRefGoogle Scholar
  27. Rolfe, P. (Ed.) (1979)Non-invasive physiological measurements. Academic Press, London, Vol. 1.Google Scholar
  28. Rudolph, A. M. andHeymann, M. A. (1967) The circulation of the fetus in utero: methods for studying distribution of blood flow, cardiac output and organ blood flow.Circ. Res.,21, 163–184.Google Scholar
  29. Salerud, E. G., Tenland, T., Nilsson, G. E. andÖberg, P.-Å. (1983) Rhythmical variations in human skin blood flow.Int. J. Microcirc: Clin. & Exp.,2, 91–102.Google Scholar
  30. Sejrsen, P. (1968) Atraumatic local labeling of skin by inert gas: epicutaneous application of xenon 133.J. Appl. Physiol.,24, 570–572.Google Scholar
  31. Sejrsen, P. (1969) Blood flow in cutaneous tissue in man studied by washout of radioactive xenon.Circ. Res.,25, 215–229.Google Scholar
  32. Sejrsen, P. (1971) Measurement of cutaneous blood flow by freely diffusable radioactive isotopes. Thesis, University of Copenhagen.Google Scholar
  33. Seldinger, S. I. (1953) Catheter replacement of the needle in percutaneous arteriography.Acta Radiol.,39, 368–376.CrossRefGoogle Scholar
  34. Stern, M. D. (1975) In vivo evaluation of microcirculation by coherent light scattering.Nature,254, 56–58.CrossRefGoogle Scholar
  35. Stern, M. D., Bowen, P. D., Parma, R., Osgood, R. W., Bowman, R. L. andStein, J. H. (1979) Measurement of renal cortical and medullary blood flow by laser-Doppler spectroscopy in the rat.Am. J. Physiol.,236, F80-F87.Google Scholar
  36. Tanaka, T. andBenedek, G. B. (1975) Measurement of the velocity of blood flow (in vivo) using a fiber optic catheter and optical mixing spectroscopy.Appl. Optics,14, 189–196.Google Scholar
  37. van der Staak, W. J. B. M., Brakkee, A. J. M. andde Rujke-Herweijer, H. E. (1968) Measurement of the thermal conductivity of the skin as an indication of skin blood flow.J. Invest. Dermatol.,51, 149–154.CrossRefGoogle Scholar
  38. Watkins, D. andHolloway, G. A. Jr. (1978) An instrument to measure cutaneous blood flow using the Doppler shift of laser light.IEEE Trans., BME-25, 28–33.Google Scholar
  39. Weinman, J., Hayat, A. andRaviv, G. (1977) Reflection photoplethysmography of arterial-blood-volume pulses.Med. & Biol. Eng. & Comput.,15, 22–31.CrossRefGoogle Scholar
  40. Wiedeman, M. P. (1963) Patterns of the arteriovenous pathways. InHandbook of physiology.Hamilton, W. F. andDow, P. (Eds.), Circulation, Section 2. Williams & Wilkins, Baltimore, Vol. II, 891–933.Google Scholar
  41. Wolgast, M. (1968) Studies on the regional renal blood flow with P32-labelled red cells and small beta-sensitive semiconductor detectors. Thesis.Acta Physiol. Scand., Suppl. 313.Google Scholar

Copyright information

© IFMBE 1987

Authors and Affiliations

  • E. Göran Salerud
    • 1
  • P. Åke Öberg
    • 1
  1. 1.Department of Biomedical EngineeringLinköping UniversityLinköpingSweden

Personalised recommendations