Optical oxygen sensor based on phosphorescence lifetime quenching and employing a polymer immobilised metalloporphyrin probe

Part 1 theory and instrumentation
  • P. M. Gewehr
  • D. T. Delpy
Transducers and Electrodes

Abstract

A review of the theory of phosphorescence quenching is given, and its particular application to the sensing of oxygen is outlined. The advantages of measuring phosphorescence lifetime as opposed to phosphorescence intensity are reviewed. The advantages of using the metalloporphyrins as such sensors are identified and in particular the characteristics of palladium coproporphyrin are discussed. The exceptionally long room temperature lifetime of this material makes it possible to use relatively simple PC-based instrumentation to measure lifetimes, with a xenon flashlamp light source. The design of such a system is given and its performance in measuring phosphorescence lifetime in aqueous solutions is demonstrated.

Keywords

Lifetime Metalloporphyrin Optical Oxygen Phosphorescence Sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballew, R. M. andDemas, J. N. (1989) An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays.Anal. Chem.,61, 30–33.Google Scholar
  2. Beddard, G. (1982) Application of flash photolysis. InLight, chemical change and life: a source book in photochemistry,Coyle,J. D.,Hill,R. R. andRoberts,D. R. (Eds.), Open University Press, Milton Keynes, 207.Google Scholar
  3. Birch, D. J. S. andImhof, R. E. (1983) Spectroscopy with fluorescence lifetimes.european spectroscopy News.,48, 31–34.Google Scholar
  4. Bonner, R. B., DeArmond, M. K. andWahl, G. H. Jr. (1972) phosphorescence of bridged biphenyls in fluid solution.J. Am. Chem. Soc.,94, 988–989.CrossRefGoogle Scholar
  5. Bonnett, R. (1989) A death ray for cancer?New Scientist,28, 55–58.Google Scholar
  6. Callis, J. B., Gouterman, M., Jones, Y. M. andHenderson, B. H. (1971) Porphyrins XXII: fast fluorescence, delayed fluorescence, and quasiline structure in palladium and platinum complexes.J. Mol. Spectrosc.,39, 410–420.CrossRefGoogle Scholar
  7. Charlton, J. L. andHenry, B. R. (1974) A simple method for the determination of phosphorescence decay rates.J. Chem. Educ.,51, 753–754.Google Scholar
  8. Coyle, J. (1982) Block 5: Chemical properties of excited states. InPhotochemistry: light, chemical change and life. Open University Press, Milton Keynes.Google Scholar
  9. Demas, J. N. (1976) Luminescence decay times and bimolecular quenching: an ultrafast kinetics experiment.J. Chem. Educ.,53, 654–656.Google Scholar
  10. Dorough, G. D., Miller, J. R. andHuennekens, F. M. (1951) Spectra of the metallo-derivatives of α,β,ψ,δ-tetra phenylporphine.J. Am. Chem. Soc.,73, 4315–4320.CrossRefGoogle Scholar
  11. Dorsch, S. E. andDorsch, J. A. (1983) Use of oxygen analyzers should be mandatory.Anaesthesiology,59, 161–162.Google Scholar
  12. Dyke, T. R. andMuenter, J. S. (1975) An undergraduate experiment for the measurement of phosphorescence lifetimes.J. Chem. Educ.,52, 251–258.Google Scholar
  13. Eastwood, D. andGouterman, M. (1970) XVIII. Luminescence of (Co), (Ni), Pd, Pt complexes.J. Mol. Spectrosc.,35, 359–375.CrossRefGoogle Scholar
  14. EG & G (1988) Short-arc xenon flashlamps and power supplies (Data Sheet F1022B-1) EG & G Electro-Optics Ltd., Salem.Google Scholar
  15. Fischkoff, S. andVanderkooi, J. M. (1975) Oxygen diffusion in biological and artificial membranes determined by fluorochrome pyrene.J. Gen. Physiol.,65, 663–676.CrossRefGoogle Scholar
  16. Fleming, G. (1982) Luminescence instrumentation. InLight, chemical change and life: a source book in photochemistry.Coyle, J. D., Hill, R. R. andRoberts, D. R. (Eds.), Open University Press, Milton Keynes, 84.Google Scholar
  17. Förster, T. (1959) Tenth Spiers memorial lecture.Faraday Soc.: Discussion Chem. Soc.,27, 7–17.CrossRefGoogle Scholar
  18. Fraser, R. B. andTurney, S. Z. (1985) New method of respiratory gas analysis: light spectrometer.J. Appl. Physiol.,59, 1001–1007.Google Scholar
  19. Fugate, R. D. (1985) Fluorescence duration gives new dimension to chemical assays.Res. & Dev., April, 120–124.Google Scholar
  20. Gehrich, J. L., Lübbers, D. W., Opitz, N., Hansmann, D. R., Miller, W. W., Tusa, J. K. andYafuso, M. (1986) Optical fluorescence and its application to an intravascular blood gas monitoring system.IEEE Trans.,BME-33, 117–132.Google Scholar
  21. Gewehr, P. M. andDelpy, D. T. (1989) Development of a system to monitor oxygen concentration by phosphorescence quenching: preliminary results.Rev. Bras. Eng.,6, 394–400.Google Scholar
  22. Gewehr, P. andDelpy, D. T. (1993) Optical oxygen sensor based on phosphorescence lifetime quenching and employing polymer immobilised metalloporphyrin probe. Part 2 Sensor membranes and results.Med. & Biol. Eng. & Comput.,31, 11–21.Google Scholar
  23. Gijzeman, O. L. J., Kaufman, F. andPorter, G. (1973) Oxygen quenching of aromatic triplet states in solution (part 1).J. Chem. Soc. Faraday Trans.,2, 708–720.Google Scholar
  24. Gouterman, M., Schumaker, C. D., Srivastava, T. S. andYonetani, T. (1976) Absorption and luminescence of yttrium and lanthanide octathylporphin complexes.Chem. Phys. Lett.,40, 456–461.CrossRefGoogle Scholar
  25. Gradyushko, A. T. andTsvirko, M. P. (1971) Probabilities of intercombination transitions in porphyrin and metalloporphyrin molecules.Optics & Spectroscopy,31, 291–295.Google Scholar
  26. Gugger, H. andCalzaferri, G. (1980a) Picosecond time resolution by a continuous wave laser amplitude modulation technique. I: a critical investigation.J. Photochem.,13, 21–33.CrossRefGoogle Scholar
  27. Gugger, H. andCalzaferri, G. (1980b) Picosecond time resolution by a continuous wave laser amplitude modulation technique. II: experimental basis. ——Ibid.,,13, 295–307.CrossRefGoogle Scholar
  28. Hahn, C. E. W. (1987) Blood gas measurement.Clin. Phys. Physiol. Meas.,8, 3–38.CrossRefGoogle Scholar
  29. Harriman, A. (1980) Luminescence of porphyrins and metalloporphyrins. Part 1.—Zinc(II), nickel(II) and manganese(II) porphyrins.J. Chem. Soc. Faraday Trans. I,76, 1978–1985.CrossRefGoogle Scholar
  30. Harriman, A. (1981) Luminescence of porphyrins and metalloporphyrins. Part 2.—Copper(II), chromium(III), manganese (III), iron(II) and iron(III) porphyrins. ——Ibid.,,77, 369–377.CrossRefGoogle Scholar
  31. Hitchman, M. L. (1978)Measurement of dissolved oxygen. John Wiley & Sons.Google Scholar
  32. Kalyanasundaram, K. andNeumann-Spallart, M. (1982) Photophysical and redox properties of water-soluble porphyrins in aqueous media.J. Phys. Chem.,86, 5163–5169.CrossRefGoogle Scholar
  33. Kautsky, H. (1939) Quenching of luminescence by oxygen.Trans. Faraday Soc.,35, 216–219.CrossRefGoogle Scholar
  34. Ladner, S. J. andBecker, R. S. (1965) Effect of environment on the unimolecular decay of the triplet state.J. Chem. Phys.,43, 3344–3354.CrossRefGoogle Scholar
  35. Lakowicz, J. R. (1985) Frequency-dependent spectroscopy measures time-dependent phenomena.Laser Focus/Electro-Optics,21(5), 156–161.Google Scholar
  36. Lewis, G. N. andKasha, M. (1944) Phosphorescence and the triplet state.J. Am. Chem. Soc.,66, 2100–2116.CrossRefGoogle Scholar
  37. Lott, P. F. andHurtubise, R. J. (1974a) LXXVII. Instrumentation for fluorescence and phosphorescence.J. Chem. Educ.,51, A315-A320.Google Scholar
  38. Lott, P. F. andHurtubise, R. J. (1974b) LXXVII. Instrumentation for fluorescence and phosphorescence (concluded). ——Ibid.,,51, A358-A364.Google Scholar
  39. Marks, W. E. Jr. (1983) A plea for the routine use of oxygen analyzers.Anesthesiol.,59, 159.Google Scholar
  40. Martin, M. J., Wickramasinghe, Y. A. B. D., Newson, T. P. andCrowe, J. A. (1987) Fibre-optics and optical sensors in medicine.Med. & Biol. Eng. & Comput.,25, 597–604.Google Scholar
  41. Mazze, R. I. (1972) Therapeutic misadventures with oxygen delivery systems: the need for continuous in-line oxygen monitors.Anesth. Analg.,51, 787–792.Google Scholar
  42. McGown, L. B. andBright, F. V. (1984) Comparison of phase-resolved and steady-state fluorimetric multicomponent determinations using wavelength selection.Anal. Chem.,56, 2195–2199.CrossRefGoogle Scholar
  43. McGown, L. B. (1989) Fluorescence lifetime filtering. ——Ibid.,,61, 839A-847A.Google Scholar
  44. McHale, J. L. andSeybold, P. G. (1976) Luminescence experiments using adsorbed dyes.J. Chem. Educ.,53, 654–656.CrossRefGoogle Scholar
  45. Meech, S. R., Stubbs, C. D. andPhillips, D. (1984) The application of fluorescence decay measurements in studies of biological systems.IEEE Trans.,QE-20, 1343–1352.Google Scholar
  46. Morgan, P. (1983) Physical gas analysers. InMeasurement in clinical respiratory physiology.Laszlo, G. andSudlow, M. F. (Eds.), Academic Press, 113.Google Scholar
  47. Parker, D. andDelpy, D. T. (1983) Blood gas analysis by invasive and non-invasive techniques. InMeasurement in clinical respiration physiology.Laszlo, G. andSudlow, M. F. (Eds), Academic Press, 75.Google Scholar
  48. Pawlowski, M. andWilson, D. F. (1991) Monitoring of the oxygen pressure in the blood of live animals using the oxygen dependent quenching of phosphorescence. InAdv. Exp. Med. & Biol. 1992 (in press).Google Scholar
  49. Peterson, J. I., Fitzgerald, R. V. andBuckhold, D. K. (1984) Fiber-optic probe forin vivo measurement of oxygen partial pressure.Anal. Chem.,56, 62–67.CrossRefGoogle Scholar
  50. Pfeifer, P. M., Pearson, D. T. andClayton, R. H. (1988) Clinical trial of the continucath intra-arterial oxygen monitor.Anaesthesia,43, 677–682.Google Scholar
  51. Rest, A. (1982) Applications of energy transfer to macromolecules. InLight, chemical change and life: a source book in photochemistry.Coyle, J. D., Hill, R. R. andRoberts, D. R. (Eds.) Open University Press, Milton Keynes, 98.Google Scholar
  52. Roberts, D. (1982) Block 4: Physical properties of excited states. InPhotochemistry: light, chemical change and life. Open University Press, Milton Keynes.Google Scholar
  53. Schulman, E. M. andWalling, C. (1973) Triplet-state phosphorescence of adsorbed ionic organic molecules at room temperature.J. Phys. Chem.,77, 902–905.CrossRefGoogle Scholar
  54. Shapiro, B. A. (1989) pH and blood gas measurements: discerning innovation from sophistication.Crit. Care Med.,17, 966–967.Google Scholar
  55. Shapiro, B. A., Cane, R. D., Chomka, C. M., Bandala, L. E. andPeruzzi, W. T. (1989) Preliminary evaluation of an intraarterial blood gas system in dogs and humans. ——Ibid.,,17, 455–460.CrossRefGoogle Scholar
  56. Siggaard-Andersen, O., Gøthgen, I. H., Wimberley, P. D., Rasmussen, J. P. andFogh-Andersen, N. (1988) Evaluation of the Gas-STAT® fluorescence sensors for continuous measurement of pH, pCO2 and pO2 during cardiopulmonary bypass and hypothermia.Scand. J. Clin. Lab. Invest.,48, Suppl. 189, 77–84.CrossRefGoogle Scholar
  57. Slayter, E. M. (1970)Optical methods in biology. Wiley Interscience, 552.Google Scholar
  58. Smoluchowski, M. (1917) Versuch einer mathematischen theorie der koagulationskinetic kolloider lösungen.Z. Phys. Chem.,92, 129–168.Google Scholar
  59. Stern, O. andVolmer, M. (1919) Über die Abklingungszeit der Fluoreszenz.Physik. Zeitschr.,20, 183–188.Google Scholar
  60. Stryer, L. (1968) Fluorescence spectroscopy of proteins.Science,162, 526–533.Google Scholar
  61. Subczynski, W. K. andHyde, J. S. (1984) Diffusion of oxygen in water and hydrocarbons using an electron spin resonance spin-label technique.Biophys. J.,45, 743–748.CrossRefGoogle Scholar
  62. Tsvirko, M. P., Sapunov, V. V. andSolovev, K. N. (1973) Triplet-triplet absorption and phosphorescence of metal-porphyrin complexes in liquid solutions.Opt. Spectrosc.,34, 635–638.Google Scholar
  63. Turley, T. J., Demas, J. N., andDemas, D. J. (1987) Microcomputerized ultrahigh-speed transient digitizer and luminescence lifetime instrument.Anal. Chim. Acta,197, 121–128.CrossRefGoogle Scholar
  64. Turney, S. Z., McAslan, T. C. andCowley, R. A. (1972) The continuous measurement of pulmonary gas exchange and mechanics.Ann. Thoracic Surg.,13, 229–242.CrossRefGoogle Scholar
  65. Vanderkooi, J. M. andWilson, D. F. (1986) A new method for measuring oxygen in concentration in biological systems. InProc. oxygen transport to tissue VIII.Longmuir, I. S. (Ed.), Plenum, New York, 189–193.Google Scholar
  66. Vanderkooi, J. M., Maniara, G., Green, T. J. andWilson, D. F. (1987) An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence.J. Biol. Chem.,262, 5476–5482.Google Scholar
  67. Ware, W. R. (1971) Transient luminescence measurements. InCreation and detection of the excited state, I(A).Lamola, A. A. (Ed.), Marcel Dekker, 288.Google Scholar
  68. Westenskow, D. R., Jordan, W. S., Jordan, R. andGillmor, S. T. (1981) Evaluation of oxygen monitors for use during anesthesia.Anesth. Analg.,60, 53–56.Google Scholar
  69. Willard, H. H., Merritt, L. L. Jr., Dean, J. A. andSettle, F. A. Jr. (1988)Instrumental methods of analysis, 7th edn. Wadsworth, Belmont.Google Scholar
  70. Wilson, D. F., Vanderkooi, J. M., Green, T. J., Maniara, G., Defeo, S. P. andBloomgarden, D. C. (1987) A versatile and sensitive method for measuring oxygen. In Proc. Oxygen Transport to Tissue IX.Silver, I. A. andSilver, A. (Eds.), Plenum, New York, 71–77.Google Scholar
  71. Wilson, D. F., Rumsey, W. L., Green, T. J. andVanderkooi, J. M. (1988) The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration.J. Biol. Chem.,263, 2712–2718.Google Scholar
  72. Wilson, R. S. andLaver, M. B. (1972) Oxygen analysis: advances in methodology,Anesthesiol.,37, 112–126.Google Scholar
  73. Yamamoto, Y., Takei, Y., Mokushi, K., Morita, H., Mutoh, Y. andMiyashita, M. (1987) Breath-by-breath measurement of alveolar gas exchange with a slow-response gas analyser.Med. & Biol. Eng. & Comput.,25, 141–146.CrossRefGoogle Scholar

Copyright information

© IFMBE 1993

Authors and Affiliations

  • P. M. Gewehr
    • 1
  • D. T. Delpy
    • 1
  1. 1.Department of Medical Physics & BioengineeringUniversity College LondonLondonUK

Personalised recommendations