Advertisement

Medical and Biological Engineering and Computing

, Volume 30, Issue 6, pp 576–583 | Cite as

Segmentation, modelling and reconstruction of arterial bifurcations in digital angiography

  • C. Pellot
  • A. Herment
  • M. Sigelle
  • P. Horain
  • P. Peronneau
Medical Physics and Imaging

Abstract

The paper presents a method to model an arterial bifurcation from a pair of X-ray angiographic images. It is the initial step of a reconstruction process aiming at detecting and quantifying abnormal sites located on bifurcations. The method proposed consists of two steps. First, each image is independently segmented to extract the vessels in the images. The algorithm uses dynamic programming first to find the bifurcation centrelines from the original images, and secondly to extract vessel edges from the morphological gradient images, under a constraint of parallelism with the previously detected centrelines. Then, a three-dimensional bifurcation model is built by adapting cylinders around the three-dimensional bifurcation centrelines. These cylinders are obtained as a stack of binary orientable ellipses fitted to the projection densities in the corresponding cross-sections. Results obtained on simulated data, phantom and femoral bifurcations are displayed.

Keywords

Arterial bifurcation Digital angiography Image processing Modelling Reconstruction Segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anakök, M. (1989) Analyse des vaisseaux sanguins en angiographie numérisée. Thèse, Université de Paris VI.Google Scholar
  2. Barillot, C., Gibaud, B., Scarabin, J. M. andCoatrieux, J. L. (1985) 3D reconstruction of cerebral blood vessels.IEEE Comput. Graph. Appl., Dec., 13–18.CrossRefGoogle Scholar
  3. Chang, S. K. andChow, C. K. (1973) The reconstruction of three-dimensional objects from two orthogonal projections and its application to cardiac cineangiography.IEEE Trans.,C-22, 18–28.Google Scholar
  4. Coster, M. andChermant, J. L. (Eds.) (1985)Précis d'analyses d'images. Edition du Centre National de la Recherche Scientifique Paris, 134–143.Google Scholar
  5. Friedland, N. andAdam, D. (1989) Automatic ventricular cavity boundary detection from sequential ultrasound images using simulated annealing.IEEE Trans.,MI-8, 344–353.Google Scholar
  6. Hoffman, K. R. (1988) Automated three-dimensional vascular reproduction from stereoangiograms. IEEE Eng. in Med. & Bio. Soc. 10th Ann. Int. Conf., New Orleans, USA, 4th–7th Nov., 406–407.Google Scholar
  7. Le Free, M. T., Simon, S. B., Sanz, M. L., Vogel, R. A. andMancini, G. B. J. (1988) Quantitative coronary arteriography. InClinical applications of cardiac digital angiography.Mancini, G. B. J. (Ed.), Raven Press, New York, 219–237.Google Scholar
  8. Pellot, C., Herment, A., Sigelle, M., Peronneau, P., andGaux, J. C. (1990) Modélisation des bifurcations vasculaires par traitement des images d'angiographie numérisée.Innov. et Technol. en Biol. et Méd.,11, 567–580.Google Scholar
  9. Pope, D. L., van Bree, R. E. andParker, D. L. (1988) Automated edge detection in the analysis of cardiac function and coronary anatomy. InClinical applications of cardiac digital angiography.Mancini, G. B. J. (Ed.), Raven Press, New York, 55–86.Google Scholar
  10. Reiber, J. H. C. (1988) Morphologic and densitometric quantification of coronary stenoses: an overview of existing quantitation techniques. InNew developments in quantitative coronary arteriography.Reiber, J. H. C. andSerruys, P. W. (Eds.) Kluwer Academic Publishers, 34–88.Google Scholar
  11. Ritchings, R. T., Colchester, A. C. F. andWang, H. Q. (1985) Knowledge-based analysis of carotid angiograms.Image & Vision Comput.,3, 217–222.CrossRefGoogle Scholar
  12. Stansfield, S. A. (1986) ANGY: A rule based expert system for automatic segmentation of coronary vessels from DSA.IEEE Trans.,PAMI-8, 188–199.Google Scholar

Copyright information

© IFMBE 1992

Authors and Affiliations

  • C. Pellot
    • 1
  • A. Herment
    • 1
  • M. Sigelle
    • 2
  • P. Horain
    • 2
  • P. Peronneau
    • 1
  1. 1.Hôpital BroussaisINSERM U256ParisFrance
  2. 2.Départment IMAENSTParisFrance

Personalised recommendations