Advertisement

Frequency analysis of lonescu-Shiley prosthetic closing sounds in patients with normally functioning prostheses

  • M. Brais
  • L. -G. Durand
  • M. Blanchard
  • J. de Guise
  • R. Guardo
  • W. J. Keon
Article

Abstract

To document the frequency distribution of lonescu-Shiley (IS) bovine pericardial xenograft valve sounds, a study was conducted on three groups of clinically stable subjects with valves implanted for less than 5 years. These groups consisted of 61 subjects with aortic IS valves, 28 subjects with mitral IS valves and 18 subjects with mitral Hancock porcine xenograft valves. Multiple comparisons with a Scheffe with mitral Hancock porcine xenograft valves. Multiple comparisons with a Scheffe test at level a=0.01 showed that the spectral characteristics of closing sounds produced by normal IS and Hancock xenografts implanted in the mitral position were both significantly different from those of IS xenografts implanted in the aortic position but not significantly different from each other. In addition, the spectral distribution of IS closing sounds was highly reproducible and very slightly affected by the duration of the implant up to 5 years.

Keywords

Cardiac xenograft valves Hancock valves Ionescu-Shiley valves Phonocardiography Spectral analysis 

References

  1. Foale, R. A., Joo, T. H., McClellan, J. H., Metzinger, R. W., Grant, G. L., Myers, G. S. andLees, R. S. (1983) Detection of aortic porcine valve dysfunction by maximum entropy spectral analysis.Circulation,68, 42–49.Google Scholar
  2. Glogar, D., Joskowicz, G., Pokorny, D., Steinbach, K. andUhlir, H. (1977) Frequenzanalytiche Charakteristika verschiendener Modelle von Aortenklappenprothensen.Herz/Kreisl.,9, 463–467.Google Scholar
  3. Ionescu, M. I., Tandon, A. P., Saunders, N. R., Chidambarom, M. andSmith, D. R. (1982) Clinical durability of the pericardial xenograft valve: 11 years experience. InCardiac bioprostheses.Cohn, L. H. andGallucci, V. (Eds.), Yorke Medical Books, New York, 42–60.Google Scholar
  4. Joo, T. H., McClellan, J. H., Foale, R. A., Myers, G. S. andLees, R. S. (1983) Pole-zero modeling and classification of phonocardiograms.IEEE Trans. BME-30, 110–118.Google Scholar
  5. Kagawa, Y., Nitta, S., Satoh, N., Saji, K., Shibota, Y., Horiuchi, T. andTanaka, M. (1977) Sound spectroanalytic diagnosis of malfunctioning posthetic heart valve.Tohoku J. Exp. Med.,123, 77–89.CrossRefGoogle Scholar
  6. Kagawa, Y., Sato, N., Nitta, S., Hongo, T., Tanaka, M., Mohri H. andHoriuchi, T. (1980) Real-time sound spectroanalysis for diagnosis of malfunctioning prosthetic valves.J. Thorac. Cardiovasc. Surg.,79, 671–679.Google Scholar
  7. Litwin, W. andBegon, F. (1974) The impact of computer on phonocardiogram interpretation. Medinfo,74, 693–703.Google Scholar
  8. Stein, P. D., Sabbah, H. N., Lakier, J. B. andGoldstein, S. (1980) Frequency spectrum of the aortic component of the second heart sound in patients with normal valves, aortic stenosis and aortic porcine xenografts.Am. J. Cardiol.,46, 48–52.CrossRefGoogle Scholar
  9. Stein, P. D., Sabbah, H. N., Lakier, J. B., Magilligan, D. J. andGoldstein, S. (1981) Frequency of the first heart sound in the assessment of stiffening of mitral bioprosthetic valves.Circulation,63, 200–203.Google Scholar
  10. Stein, P. D., Sabbah, H. N., Lakier, J. B., Kemp, S. R. andMagilligan, D. J. (1984) Frequency spectra of the first heart sound and of the aortic component of the second heart sound in patients with degenerated porcine bioprosthetic valves.Am. J. Cardiol.,53, 557–561.CrossRefGoogle Scholar
  11. Suobank, D. W., Yoganathan, A. P., Harrison, E. C. andCorcoran, W. H. (1984a) A quantitative method for thein vitro study of sounds produced by prosthetic aortic heart valves Part I: analytical considerations.Med. & Biol. Eng. & Comput.,22, 32–39.Google Scholar
  12. Soubank, D. W., Yoganathan, A. P., Harrison, E. C. andCorcoran, W. H. (1984b) A quantitative method for thein vitro study of sounds produced by prosthetic aortic heart valves Part II: an experimental, comparative study of the sounds produced by a normal and simulated-abnormal Sarr-Edwards series 2400 aortic prosthesis.,22, 40–47.Google Scholar
  13. Suobank, D. W., Yoganathan, A. P., Harrison, E. C. andCorcoran, W. H. (1984c) A quantitative method for heart valves Part III: an experimental, comparative study of the sounds produced by experimental, comparative study of the sounds produced by normal and simulated-abnormal Smeloff aortic prostheses.,22, 48–54.Google Scholar
  14. Szkopiec, R. L., Desser, K. B., Benchimol, A. andSheasby, C. (1983) Phonocardiographic findings in patients with normally functioning Ionescu-Shiley prostheses.Am. J. Cardiol.,51, 969–972.CrossRefGoogle Scholar
  15. Welch, P. D. (1967) The use of the fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms.IEEE Trans.,AU-15, 70–73.MathSciNetGoogle Scholar
  16. Wessner, E., Blinowska, K., Joskovicz, G., Pokorny, D. andSteinbach, K. (1974) Die frequenzanalyze von Herztönen mit einem digitalrechner.Atomenergie,PH-159, 1–17.Google Scholar
  17. Yoganathan, A. P., Gupta, R., Udwadia, F. R., Miller, J. W., Corcoran, W. H., Sarma, R., Johson, J. L. andBing, R. J. (1976a) Use of the fast Fourier transform for the frequency analysis of the first heart sound in normal man.Med. & Biol. Eng.,14, 69–73.Google Scholar
  18. Yoganathan, A. P., Gupta, R. andCorcoran, W. H. (1976b) Fast Fourier transform in the analysis of biomedical data.,14, 239–244.Google Scholar
  19. Yoganathan, A. P., Gupta, R., Udwadia, F. E., Sarma, R., andBing, R. J. (1976c) Use of the fast Fourier transform in the frequency analysis of the second heart sound in normal man.,14, 455–460.Google Scholar

Copyright information

© IFMBE 1986

Authors and Affiliations

  • M. Brais
    • 1
  • L. -G. Durand
    • 2
  • M. Blanchard
    • 2
  • J. de Guise
    • 2
  • R. Guardo
    • 3
  • W. J. Keon
    • 1
  1. 1.Ottawa Civic HospitalUniversity of Ottawa Heart InstituteOntarioCanada
  2. 2.Clinical Research Institute of MontrealUniversity of MontrealQuebecMontrealCanada
  3. 3.Biomedical Engineering Institute, Ecole PolytechniqueUniversity of MontrealQuebecCanada

Personalised recommendations