Peripheral nerve stimulation by induced electric currents: Exposure to time-varying magnetic fields

  • J. P. Reilly


The review evaluates thresholds of peripheral nerve stimulation by complex current waveforms. A neuroelectric model employing Frankenhaeuser-Huxley membrane nonlinearities is used to derive excitation thresholds for monophasic and biphasic pulse sequences, as well as sinusoidal stimuli. The model, along with principles of magnetic field induction, is used to derive criteria of acceptability for exposure to time-varying magnetic fields. Applications to pulsed gradient fields from magnetic resonance imaging devices are discussed.


Electric shock Electrical safety Electrical stimulation Magnetic field exposure Magnetic resonance imaging Neural excitation 


  1. Anderson, A. B. andMunson, W. A. (1951) Electrical stimulation of nerves in the skin at audio frequencies.J. Acoust. Soc. Am.,23, 155–159.CrossRefGoogle Scholar
  2. Barker, A. T., Freeston, I. L., Jalinous, B. andJarratt, J. A. (1987) Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation.Neurosurg.,20, 100–109.Google Scholar
  3. Bernhardt, J. H. (1985) Evaluation of human exposures to low frequency fields. The impact of proposed frequency radiation standards on military operations. Lecture Series 138 Advisory Group for Aerospace Res. & Dev. (NATO), Surseine, France.Google Scholar
  4. Brazier, M. A. (1977)Electrical activity of the nervous system. Williams & Williams Co., Baltimore.Google Scholar
  5. Caruso, P. M., Pearce, J. A. andDeWitt, D. P. (1979) Temperature and current density distributions at electrosurgical dispersive electrode sites. Proc. 7th New England Bioeng. Conf., Troy, New York, 22nd–23rd March, 373–376.Google Scholar
  6. Chatterjee, I., Wu, D. andGandhi, O. P. (1986) Human body impedance and threshold currents for perception and pain for contact hazard analysis in the VLF-MF band.IEEE Trans.,BME-33, 486–494.Google Scholar
  7. Dalziel, C. F. (1972) Electric shock hazard.IEEE Spectrum,9, (2), 41–50.CrossRefGoogle Scholar
  8. Frankenhaeuser, B. andHuxley, A. F. (1964) The action potential in the myelinated nerve fiber ofXenopus laevis as computed on the basis of voltage clamp data.J. Physiol.,171, 302–315.Google Scholar
  9. Hodgkin, A. L. andHuxley, A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve.Ibid.,,117, 500–544.Google Scholar
  10. Irwin, D., Rush, S., Evermy, R., Lepeschkin, E., Montgomery, D. B. andWeggel, R. J. (1970) Stimulation of cardiac muscle by a time-varying magnetic field.IEEE Trans.,MAG-6, 321–322.Google Scholar
  11. Kandel, E. R. andSchwartz, J. B. (1981)Principles of neural science. Elsevier/North-Holland, New York.Google Scholar
  12. Kloss, D. A. andCarstensen, E. L. (1983) Effects of ELF electric fields on the isolated frog heart.IEEE Trans.,BME-30, 347–348.Google Scholar
  13. McNeal, D. R. (1976) Analysis of a model for excitation of myelinated nerve.Ibid.,,BME-23, 329–337.Google Scholar
  14. McNeal, D. R. andTeicher, D. A. (1977) Effect of electrode placement on threshold and initial site of excitation of a myelinated nerve fiber. InFunctional electrical stimulation.Hambrecht, T. F. andReswick, J. B. (Eds.), Marcel Decker Inc., New York.Google Scholar
  15. McRobbie, D. andFoster, M. A. (1984) Thresholds for biological effects of time-varying magnetic fields.Clin. Phys. Physiol. Meas.,5, 67–78.CrossRefGoogle Scholar
  16. McRobbie, D. andFoster, M. A. (1985) Cardiac response to pulsed magnetic fields with regard to safety in NMR imaging.Phys. in Med. & Biol.,30, 695–702.CrossRefGoogle Scholar
  17. NRPB, National Radiological Protection Board (1983) Revised guidance on acceptable limits of exposure during nuclear magnetic resonance clinical imaging.Br. J. Radiol.,56, 974–977.CrossRefGoogle Scholar
  18. Polson, M. J. R., Barker, A. T. andGardiner, S. (1982a) The effect of rapid rise-time magnetic fields on the ECG of the rat.Clin. Phys. Physiol. Meas.,3, 231–234.CrossRefGoogle Scholar
  19. Polson, M. J. R., Barker, A. T. andFreeston, I. L. (1982b) Stimulation of nerve trunks with time-varying magnetic fields.Med. & Biol. Eng. & Comput.,20, 243–244.Google Scholar
  20. Ranck, J. B. (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review.Brain Res.,98, 417–440.CrossRefGoogle Scholar
  21. Reilly, J. P. andLarkin, W. D. (1983) Electrocutaneous stimulation with high voltage capacitive discharges.IEEE Trans.,BME-30, 631–641.Google Scholar
  22. Reilly, J. P. andLarkin, W. D. (1984) Understanding transient electric shock.Johns Hopkins APL Tech. Dig.,5, 296–304.Google Scholar
  23. Reilly, J. P., Freeman, V. T. andLarkin, W. D. (1985) Sensory effects of transient electrical stimulation—evaluation with a neuroelectric model.IEEE Trans.,BME-32, 1001–1011.Google Scholar
  24. Reilly, J. P. andBauer, R. H. (1987) Application of a neuroelectric model to electrocutaneous sensory sensitivity: parameter variation study.Ibid.,,BME-34, 752–754.Google Scholar
  25. Reilly, J. P. andLarkin, W. D. (1987) Human sensitivity to electric shock induced by power frequency electric fields.Ibid.,,EMC-29, 221–232.Google Scholar
  26. Reilly, J. P. (1988) Neuroelectric models for electrical stimulation studies.Johns Hopkins APL Tech. Dig.,9, (1), 44–59.Google Scholar
  27. Roy, O. Z., Mortimer, A. J., Trollope, B. J. andVilleneuve, E. J. (1985) Electrical stimulation of the isolated rabbit heart by short duration transients. pp. 77–86 InElectrical shock safety criteria,Bridges,J. E.,Ford,G. L.,Sherman,I. A. andVainberg,M. (Eds.), Pergamon Press, New York.Google Scholar
  28. Ruch, T. C., Patton, H. D., Woodbury, J. W. andTowe, A. L. (1968)Neurophysiology, W. B. Saunders Co., Philadelphia.Google Scholar
  29. Saunders, F. A. (1974) Electrocutaneous displays. Proc. Conf. on Cutaneous Communication Systems and Devices, The Psychonomic Society, Austin, Texas, 20–26.Google Scholar
  30. Silny, J. (1986) The influence of threshold of the time-varying magnetic field in the human organism. InBiological effects of static and extremely low frequency magnetic fields.Bernhardt, J. H. (Ed), MMV Medzin Verlag, München, 105–115.Google Scholar
  31. Ueno, S., Harada, K, Ji, C. andOomura, Y. (1984) Magnetic nerve stimulation without interlinkage between nerve and magnetic flux,IEEE Trans.,MAG-20, 1660–1662.Google Scholar

Copyright information

© IFMBE 1989

Authors and Affiliations

  • J. P. Reilly
    • 1
  1. 1.Applied Physics Laboratory, Johns Hopkins RoadThe Johns Hopkins UniversityLaurelUSA

Personalised recommendations