Modified cell proliferation due to electrical currents

  • L. Vodovnik
  • D. Miklavčič
  • G. Serša
Special Feature: Cellular Engineering

Abstract

In view of the evidence that electrical currents may enhance healing of chronic wounds and retard tumour growth it is suggested that these currents normalise cell proliferation. Additional support to this contention is given by two reports: one on healing of pressure sores in man and one on tumour growth retardation in mice. The effect of an ionic environment on the cell cycle is analysed. Finally a hypothesis attempting to explain the normalising effect of electrical currents on cell proliferation is proposed. It is known that non-dividing cells, e.g. mature neurons, have high transmembrane potential (TMP) whereas fast-dividing cells, e.g. cancerous cells, have low TMP. When a cell is exposed to an electrical field, one side of the cell becomes hyperpolarised while the opposite side is depolarised. Assuming a nonlinear relationship between TMP and the transmembrane ionic currents, it can be shown that in non-dividing cells their high TMP is lowered; whereas in cells with a high division rate, their low TMP is raised due to cell exposure to the external electrical field. These alterations in transmembrane potential could contribute to the normalisation of abnormal cell proliferation.

Keywords

Cell division Decubitus ulcers Electrical stimulation Membrane potentials Neoplasms 

References

  1. Baserga, R. (1990) The cell cycle: myths and realities.Cancer Res.,50, 6769–6771.Google Scholar
  2. Binggeli, R. andWeinstein, R. C. (1985) Deficits in elevating membrane potential of rat fibrosarcoma cells after cell contact.Ibid.,45, 235–241.Google Scholar
  3. Boonstra, J., Mummery, C. L., Leon, G. J., Tertoolen, L. G. J., van der Saag, P. T. andde Laat, S. W. (1981). Cation transport and growth regulation in neuroblastoma cells. Modulations of K+ transport and electrical membrane properties during the cell cycle.J. Cell. Physiol.,107, 75–83.CrossRefGoogle Scholar
  4. Borgens, R. B. (1982) What is the role of naturally produced electric current in vertebrate regeneration and healing.Int. Rev. Cytol.,76, 245–298.Google Scholar
  5. Cameron, I. L., Smith, N. K. R., Pool, T. B. andSparks, R. L. (1980) Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo.Cancer Res.,40, 1493–1500.Google Scholar
  6. Carley, P. J. andWainapel, S. F. (1985) Electrotherapy for acceleration of wound healing: low intensity direct current.Arch. Phys. Med. Rehabil.,66, 443–446.Google Scholar
  7. Cho-Chung, Y. S. (1990) Role of cyclic AMP receptor proteins in growth, differentiation and suppression of malignancy: new approaches to therapy.Cancer Res.,50, 7093–7100.Google Scholar
  8. Cone, C. D. Jr. (1969) Electroosmotic interactions accompanying mitosis initiation in sarcoma cellsin vitro.Trans. NY Acad. Sci.,31, 404–427.Google Scholar
  9. Cone, C. D. Jr. (1970) Oncogenesis.Oncol.,24, 438–470.CrossRefGoogle Scholar
  10. Cone, C. D. Jr. (1971) Unified theory on the basic mechanism of normal mitotic control and oncogenesis.J. Theor. Biol.,30, 151–181.CrossRefGoogle Scholar
  11. Cone, C. D. andTongier, M. Jr (1973) Contact inhibition of division: involvement of the electrical transmembrane potential.J. Cell Physiol.,82, 373–386.CrossRefGoogle Scholar
  12. Cone, C. D. Jr. andCone, C. M. (1976) Induction of mitosis in mature neurons in central nervous system by sustained depolarization.Science,192, 155–158.Google Scholar
  13. David, S. L., Absalom, D. R., Smith, C. R., Gams, J. andHerbert, M. A. (1985) Effect of low level direct current onin vivo tumor growth in hamsters.Cancer Res.,45, 5625–5631.Google Scholar
  14. de Loof, A. (1986) The electrical dimension of cells: the cell as a miniature electrophoresis chamber.Int. Rev. Cytol.,104, 251–352.CrossRefGoogle Scholar
  15. Donaldson, D. J. (1975) Cancer-related aspects of regeneration research: a review.Growth,39, 475–496.Google Scholar
  16. Douzou, P. andMaurel, P. (1977) Ionic regulation in genetic translation systems.Proc. Nat. Acad. Sci. USA74, 1013–1015.CrossRefGoogle Scholar
  17. Eberhard, D. A. andHolz, R. W. (1988) Intracellular Ca2+ activates phospholipase C.Trends in Neurobiol. Sci.,11, 517–520.CrossRefGoogle Scholar
  18. Edidin, M. andWei, T. (1977) Diffusion rates of cell surface antigens of mouse-human heterokaryons.J. Cell Biol.,75, 483–489.CrossRefGoogle Scholar
  19. Findl, E. (1987) Membrane transduction of low energy level fields and Ca++ hypothesis. InMechanistic approaches to interactions of electric and electromagnetic fields with living systems.Blank, M. andFindl, E. (Eds.), Plenum Press, New York, 15–38.Google Scholar
  20. Gault, W. R. andGatens, P. F. (1976) Use of low intensity direct current in management of ischemic skin ulcers.Phys. Ther.,56, 265–269.Google Scholar
  21. Hartwell, L. H. andWeinert, T. A. (1989) Checkpoints: controls that insure the order of cell cycle events.Science,246, 629–634.Google Scholar
  22. Heinrich, R., Gaestel, M., Glaser, R. (1982) The electric potential profile across the erythrocyte membrane.J. Theor. Biol.,96, 211–231.CrossRefGoogle Scholar
  23. Humphrey, C. E. andSeal, E. H. (1959) Biophysical approach towards tumor regression in mice.Science,130, 388–390.Google Scholar
  24. Ieran, M., Zaffuto, S., Bagnacani, M., Annovi, M., Moratti, A. andCadossi, R. (1990) Effect of low frequency pulsing electromagnetic fields on skin ulcers of venous origin in humans: a double-blind study.J. Orthop. Res.,8, 276–282.CrossRefGoogle Scholar
  25. Iglič, A., Brumen, M. andSvetina, S. (1987) The determination of the inner surface potential of erythrocyte membrane by measuring the 1-anilino-8-naphtalene sulfonate uptake.Perf. Biol.,89, 363–366.Google Scholar
  26. Jaffe, L. F. (1977) Electrophoresis along cell membranes.Nature,265, 600–602.CrossRefGoogle Scholar
  27. Jaffe, L. F. andNuccitelli, R. (1977) Electrical controls of development.Ann. Rev. Biophys. Bioeng.,6, 445–476.CrossRefGoogle Scholar
  28. Jivegard, L., Augustinsson, L. E., Carlsson, C. A. andHolm, J. (1987) Long-term results by epidural spinal electrical stimulation (ESES) in patients with inoperable severe lower limb ischaemia.Eur. J. Vasc. Surg.,1, 345–349.CrossRefGoogle Scholar
  29. Kaada, B. (1983) Promoted healing of chronic ulceration by transcutaneous nerve stimulation (TNS).VASA,12, 262–269.Google Scholar
  30. Karba, R., Vodovnik, L., Prešern-Štrukelj, M. andKlešnik, M. (1991). Promoted healing of chronic wounds due to electrical stimulation.Wounds,3, 16–23.Google Scholar
  31. Kloth, L. C. andFeedar, J. A. (1988) Acceleration of wound healing with high voltage, monophasic, pulsed current.Phys. Ther.,68, 503–508.Google Scholar
  32. Laskey, R. A., Fairman, M. P. andBlow, J. J. (1989) S phase of the cell cycle.Science,246, 609–613.Google Scholar
  33. Leffert, H. L. (Ed.) (1980) Growth regulation by ion fluxes.Ann. NY Acad. Sci., Suppl. 339.Google Scholar
  34. Marino, A. A., Morris, D. andArnold, T. (1986) Electrical treatment of Lewis lung carcinoma in mice.J. Surg. Res.,41, 198–201.CrossRefGoogle Scholar
  35. McDonald, F., Sachs, H. G., Orr, C. W. andEbert, J. D. (1972) External potassium and baby hamster kidney cells: intracellular ions, ATP, DNA synthesis and membrane potential.Develop. Biol.,28, 290–303.CrossRefGoogle Scholar
  36. McIntosh, J. R. andKoonce, M. P. (1989) Mitosis.Science,246, 622–628.Google Scholar
  37. McLaughlin, S. (1989) The electrostatic properties of membranes.Ann. Rev. Biophys. & Biophys. Chem.,18, 113–136.CrossRefGoogle Scholar
  38. Miklavčič, D., Serša, G., Novaković, S. andReberšek, S. (1990) Tumor bioelectric potential and its possible exploitation for tumor growth retardation.J. Bioelectr.,9, 133–149.Google Scholar
  39. Miyazaki, K. andHorio, T. (1989) Growth inhibitors: molecular diversity and roles in cell proliferation.In Vitro Cellular & Develop. Biol.,25, 866–872.Google Scholar
  40. Murray, A. W. andKirschner, M. W. (1989) Dominoes and clocks: the union of two views of the cell cycle.Science,264, 614–621.Google Scholar
  41. Murray, A. W. andKirschner, M. W. (1991) What controls the cell cycle.Scientific American,264, 34–41.CrossRefGoogle Scholar
  42. Nicolson, G. L. (1976a) Transmembrane control of the receptors on normal and tumor cells: I. Cytoplasmatic influence over cell surface components.Bichim. et Biophys. Acta,457, 57–108.Google Scholar
  43. Nicolson, G. L. (1976b) Transmembrane control of the receptors on normal and tumor cells: II. Surface changes associated with transformation and malignancy.Ibid.,458, 1–72.Google Scholar
  44. Niemtzow, R. C. (Ed.) (1985)Transmembrane potentials and characteristics of immune and tumor cells. CRC Press Inc., Boca Raton, Florida.Google Scholar
  45. Nordenström, B. E. W. (1989) Electrochemical treatment of cancer. I: Variable response to anodic and cathodic fields.Am. J. Clin. Oncol.,12, 530–536.Google Scholar
  46. O'Farrell, P. H., Edgar, B. A., Lakich, D. andLehner, C. F. (1989) Directing cell division during development.Science,246, 635–640.Google Scholar
  47. Orr, C. W., Yoshikawa-Fukada, M. andEbert J. D. (1972) Potassium: effect on DNA synthesis and multiplication of baby-hamster kidney cells.Proc. Nat. Acad. Sci. USA,69, 243–247.CrossRefGoogle Scholar
  48. Pardee, A. B. (1989) G1 events and regulation of cell proliferation.Science,246, 603–608.Google Scholar
  49. Poo, M. andRobinson, K. R. (1977) Electrophoresis of concanavalin A receptors along embryonic muscle cell membrane.Nature,265, 602–605.CrossRefGoogle Scholar
  50. Poo, M. (1981)In situ electrophoresis of membrane components.Ann. Rev. Biophys. Bioeng.,10, 245–276.CrossRefGoogle Scholar
  51. Price, J. A. R., Pethig, R., Chiu-Nan Lai, Becker, F. F., Gascoyne, P. R. C. andSzent-Györgyi, A. (1987) Changes in cell surface charge and transmembrane potential accompanying neoplastic transformation of rat kidney cells.Biochim. et Biophys. Acta,898, 129–136.CrossRefGoogle Scholar
  52. Robinson, K. R. (1985) The response of cells to electrical fields: a review.J. Cell. Biol.,101, 2023–2027.CrossRefGoogle Scholar
  53. Sachs, H. G., Stambrook, P. J. andEbert, J. D. (1974) Changes in membrane potential during the cell cycle.Exp. Cell Res.,83, 362–366.CrossRefGoogle Scholar
  54. Savitz, D. A., John, E. M. andKleckner, R. C. (1990) Magnetic field exposure from electric appliances and childhood cancer.Am. J. Epidemiol.,131, 763–773.Google Scholar
  55. Serša, G. andMiklavčič, D. (1990) Inhibition of Sa-1 tumor growth in mice by human leukocyte interferon alpha combined with low-level direct current.Mol. Biother.,2, 165–168.Google Scholar
  56. Sorrentino, V. (1989) Growth factors, growth inhibitors and cell cycle control (Review).Anticancer Res.,9, 1925–1936.Google Scholar
  57. Stambrook, P. J., Sachs, H. G. andEbert, J. D. (1974) The effect of potassium on the cell membrane potential and the passage of synchronized cells through the cell cycle.J. Cell Physiol.,85, 283–292.CrossRefGoogle Scholar
  58. Stefanovska, A., Vodovnik, L., Benko, H., Maležič, M., Turk, R., Kolenc, A. andReberšek, S. (1987) Enhancement of ulcerated tissue healing by electrical stimulation. Proc. RESNA 10th Ann. Conf., San Jose, USA, 585–587.Google Scholar
  59. Vodovnik, L., Stefanovska, A., Reberšek, S., Bajd, T., Gros, N., Benko, H., Turk, R. andMaležič, M. (1988) Electrotherapy and its application in spasticity and wound healing.Jpn. J. of Traumat. & Occup. Med.,36, 40–44.Google Scholar
  60. Vodovnik, L., andStefanovska, A. (1989) Restorative and regenerative functional electrical stimulation. Proc. Osaka Int. Workshop on FNS, 19th–21st Nov., Osaka, Japan, 11–27.Google Scholar
  61. Vodovnik, L., Stefanovska, A., Karba, R., Jerčinović, A., Krošelj, P., Turk, R., Benko, H., Džidić, I., andObreza, P. (1991) Effects of electrical stimulation on wound healing (abstract). Selected papers,Faust, U. (Ed.), 1st Europ. Conf. on Biomed. Eng., 17th–20th Feb., Nice, France, 133–134.Google Scholar
  62. Wertheimer, N. andLeeper, E. (1979) Electrical wiring configurations and childhood cancer.Am. J. Epidemiol.,109, 273–284.Google Scholar
  63. Williams, J. A. (1970) Origin of transmembrane potentials in non-excitable cells.J. Theor. Biol.,28, 287–296.CrossRefGoogle Scholar
  64. Wolcott, L. E., Wheeler, P. C., Hardwicke, H. M. andRowley, B. A. (1969) Accelerated healing of skin ulcers by electrotherapy: preliminary clinical results.South Med. J.,62, 795–801.Google Scholar
  65. Zs-Nagy, I., Lustyik, G., Zs-Nagy, V., Zar'andai, B. andBertoni-Freddari, C. (1981) Intracellular Na+∶K+ ratios in human cancer cells as revealed by energy dispersive X-ray microanalysis.J. Cell. Biol.,90, 769–777.CrossRefGoogle Scholar

Copyright information

© IFMBE 1992

Authors and Affiliations

  • L. Vodovnik
    • 1
  • D. Miklavčič
    • 1
  • G. Serša
    • 2
  1. 1.Faculty of Electrical & Computer EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Institute of OncologyLjubljanaSlovenia

Personalised recommendations