Tissue engineering in the USA

  • R. M. Nerem
Special Feature: Cellular Engineering

Abstract

Tissue engineering is the application of the principles and methods of engineering and the life sciences towards the development of biological substitutes to restore, maintain or improve functions. It is an area which is emerging in importance worldwide. In the USA it has been actively fostered by the National Science Foundation, both through research grants and the sponsorship of a series of workshops starting in 1988. This brief review of activities in the USA focuses on cell culture technology as a foundation for tissue engineering and then discusses examples of applications. These include artificial skin and the use of encapsulated cells in the development of bioartificial organs. Also discussed is the reconstitution of a blood vessel in culture, both for use in basic research and for implantation as an artificial blood vessel in bypass surgery. In conclusion, other potential applications are mentioned as well as generic areas of technology for future development.

Keywords

Artificial skin Bioartificial organs Biological substitutes Blood vessels Cell culture technology Encapsulated cells 

References

  1. Aebischer, P., Winn, S. R., Tresco, P. A., Greene, L. A. andJaeger, C. B. (1991) Transplantation of polymer encapsulated neurotransmitter secreting cells: effect of the encapsulation technique.J. Biomech. Eng.,113, 178–183.Google Scholar
  2. Barnard, S. M. andWalt, D. R. (1991) Chemical sensors based on controlled-release polymer systems.Science,251, 927–929.Google Scholar
  3. Bell, E., Ehrlich, H., Buttlle, D. andNakatsuji, T. (1981) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness.Ibid.,,211, 1052–1054.Google Scholar
  4. Bell, E., Sher, S., Hull, B., Merrill, C., Rosen, S., Chamson, A., Asselineau, D., Dubertret, L., Coulomb, B., Lapiere, C., Nusgens, B. andNeveus, Y. (1983) The reconstitution of living skin.J. Invest. Dermotol.,81, 2s-10s.CrossRefGoogle Scholar
  5. Bell, E., Rosenberg, M., Kemp, P. L., Parenteau, N., Haimes, H., Chen, J., Swiderek, M., Kaplan, R., Kagan, D., Mason, V. andBoucher, L. (1989). Reconstitution of living organ equivalents from specialized cells and matrix biomolecules.Baquey, C. andDupuy, B. (Eds.), Proc. INSERM Coll. Hybrid Artificial Organs, 13–28.Google Scholar
  6. Cima, L., Vacanti, J. P., Vacanti, C., Ingber, D., Mooney, D. andLanger, R. (1991) Tissue engineering by cell transplantation using degradable polymer substrates.J. Biomech. Enr.,113, 143–151.Google Scholar
  7. Colton, C. andAugoustiniatos, E. S. (1991) Bioengineering in the development of the hybrid artificial pancreas.Ibid.,,113, 152–170.Google Scholar
  8. Fox, C. F. andBurger, M. M. (Eds.) (1990) Abstract proceedings, UCLA Symposium on Tissue Engineering.J. Cell. Biochem., Suppl. 14E, 227–256.Google Scholar
  9. Friedman, E. A. (1989) Toward a hybrid artificial pancreas.Diabetes Care,12, 415–420.Google Scholar
  10. Jones, P. A. (1982) Construction of an artificial blood vessel wall from cultured endothelial and smooth muscle cells.J. Cell Biol.,74, 1882–1886.Google Scholar
  11. Khan, T., Dauzvardis, M. andSayers, S. (1991) Carbon filament implants promote axonal growth across the transected rat spinal cord.Brain Res.,541, 139–145.CrossRefGoogle Scholar
  12. Langer, R. (1990) New methods of drug delivery.Science,249, 1527–1533.Google Scholar
  13. Leff, D. (1983) New biological assembly line. InThe cell: inter-and intra-relationships. NSF Mosaic Reader series, Avery Publishing Group, Wayne, New Jersey, 20–27.Google Scholar
  14. Levesque, M. J. andNerem, R. M. (1985) The elongation and orientation of cultured endothelial cells in response to shear stress.J. Biomech Eng.,176, 341–347.CrossRefGoogle Scholar
  15. Levesque, M. J., Sprague, E. A., Schwartz, C. J. andNerem, R. M. (1989). The influence of shear stress on cultured vascular endothelial cells: the stress response of an anchorage-dependent mammalian cell.Biotech. Prog.,5, 1–8.CrossRefGoogle Scholar
  16. Levesque, M. J., Nerem, R. M. andSprague, E. A. (1990) Vascular endothelial cell proliferation in culture and the influence of flow.Biomaterials,11, 702–707.CrossRefGoogle Scholar
  17. Lim, F. andSum, A. M. (1980) Microencapsulated islets as bio-artificial endocrine pancreas.Science,210, 908–910.Google Scholar
  18. Nabel, E. G. andNabel, G. J. (1991) Gene transfer and cardiovascular disease.Trends Cardiovasc. Med.,1, (1), 12–17.CrossRefGoogle Scholar
  19. Nerem, R. M. andGirard, P. R. (1990) Hemodynamic influences on vascular endothelial biology.Toxic. Path.,18, 572–582.Google Scholar
  20. Pool, R. (1990) Slow going for blood substitutes.Science,250, 1655–1656.Google Scholar
  21. Skalak, R. andFox, C. F. (Eds.) (1988)Tissue engineering. Alan R. Liss, New York.Google Scholar
  22. Skalak, R. (Ed.) (1991) Special issue on tissue engineering.J. Biomech. Eng.,113, (2).Google Scholar
  23. Stanley, J. C., Burkel, W. E., Ford, J. W., Vinter, D. W., Kahn, R. H., Whitehouse, W. M. Jr andGraham, L. M. (1982). Enhanced patency of small-diameter, externally supported dacron iliofemoral grafts seeded with endothelial cells.Surg.,92, 994–1005.Google Scholar
  24. Tompkins, R., Hilton, J., Burke, J., Schoengeld, D., Hegarty, M., Bondoc, C., Quimby, W., Behringer, G. andAckroyd, F. (1989) Increased survival after massive thermal injuries in adults: preliminary report using artificial skin.Crit. Care Med.,17, 8, 734–740.Google Scholar
  25. van Brunt, J. (1991) Artificial organs from culture.Biotech.,9, 136–137.CrossRefGoogle Scholar
  26. van Buul-Wortelboer, M. F., Brinkman, H. J. M., Dingemans, K. P., DeGroot, P. G., van Aken, W. G. andvan Mourick, J. A. (1986) Reconstruction of the vascular wall in vitro: a novel model to study interactions between endothelial and smooth muscle cells.Exp. Cell Res.,162, 151–158.CrossRefGoogle Scholar
  27. Weinberg, C. B. andBell, E. (1986) A blood vessel model constructed from collagen and cultured vascular cells.Science,231, 397–399.Google Scholar
  28. Wilson, J. M., Birinyi, L. K., Salomon, R. N., Libby, P., Callow, A. D. andMulligan, R. C. (1989) Implantation of vascular grafts lined with genetically modified endothelial cells.Ibid.,,244, 1344–1346.Google Scholar
  29. Yannas, I. V., Burke, J. F., Orgill, D. P. andSkrabut, E. M. (1982) Wound tissue can utilize a polymeric template to synthesize a functional extention of skin.Ibid.,,215, 174–176.Google Scholar
  30. Zilla, P. P., Fasol, R. D. andDeutsch, M. (Eds.) (1987)Endothelialization of vascular grafts. Karger, Basel, Switzerland.Google Scholar

Copyright information

© IFMBE 1992

Authors and Affiliations

  • R. M. Nerem
    • 1
  1. 1.Biomechanics Laboratory and School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations