Magnetic field excitation of peripheral nerves and the heart: a comparison of thresholds

  • J. P. Reilly
Biomedical Engineering

Abstract

Time-varying magnetic fields can theoretically excite the heart or peripheral nerves. Relative excitation thresholds of nerve and heart are compared using ellipsoidal representations of the human torso. Relative magnetic thresholds depend on the excitability of nerve and cardiac tissue, the geometric positions of anatomical features, stimulus waveform features and the direction and spatial distribution of the incident magnetic field. Minimum electric field thresholds for excitation of nerve and heart do not differ greatly. Nevertheless, nerve and heart magnetic thresholds may be disparate because of factors related to body geometry and the dependence of excitability on the stimulus waveform.

Keywords

Electrical stimulation Magnetic resonance imaging Magnetic stimulation 

References

  1. Alon, G., Allin, J. andInbar, G.F. (1983) Optimization of pulse duration and pulse charge during transcutaneous electrical nerve stimulation.Australian J. of Physiother.,29, (6), 195–201.Google Scholar
  2. Anderson, G. J. andMunson, W. A. (1951) Electrical stimulation of nerves in the skin at audio frequencies.J. Acoust. Soc. Am.,23, (2), 155–159.CrossRefGoogle Scholar
  3. Budinger, T. F., Fischer, H., Hentchel, D., Reinfelder, H. E. andSchmitt, F. (1990) Neural stimulationdB/dt thresholds for frequency and number of oscillations using sinusoidal magnetic gradient fields. Soc. of Magnetic Resonance in Med., 9th annual meeting, 18th–24th August, 1990, New York.Google Scholar
  4. Caruso, P. M., Pearce, J. A. andDeWitt, D. P. (1979) Temperature and current density distributions at electrical surgical dispersive sites, Proc. 7th New England Bioengineering Conf. Troy, New York, 22nd–23rd March 1979, 373–376.Google Scholar
  5. Chatterjee, I., Wu, D. andGandhi, O. P. (1986) Human body impedance and threshold currents for perception and pain for contact hazard analysis in the VLF-MF band.IEEE Trans. Biomed. Eng.,BME-33, (5), 486–494.Google Scholar
  6. Cohen, M. S., Weisskoff, R. M., Rzedzian, R. R. andKantor, H. C. (1990) Sensory stimulation by time-varying magnetic fields.Magnetic Resonance in Medicine,14, 409–414.Google Scholar
  7. Crago, P. E., Peckham, P. H., Mortimer, J. T. andVan der Meulen, J. P. (1974) The choice of pulse duration for chronic electrical stimulation via surface, nerve, and intramuscular electrodes.Annals Biomed. Eng.,2, 252–264.CrossRefGoogle Scholar
  8. Dalziel, C. F. (1954) The threshold of perception current.Trans. AIEE. pt III B, 990–996.Google Scholar
  9. Dalziel, C. F. (1968) Reevaluation of lethal electric currents.IEEE Trans. Ind. Appl.,IGA-4, (5), 467–476.CrossRefGoogle Scholar
  10. Dalziel, C. F. andMansfield, T. H. (1950) Effects of frequency on perception currents.AIEE Trans.,69, 1162–1168.Google Scholar
  11. Dominguez, G. andFozzard, H. A. (1970) Influence of extracellular K+ concentration on cable properties and excitability of sheep cardiac Purkinje fibers.Circ. Res.,26, 565–574.Google Scholar
  12. Durney, C. H., Johnson, C. C. andMassoudi, H. (1975) Long-wavelength analysis of plane wave irradiation of a prolate spheroid model of a man.IEEE Trans. Microwave Theory and Tech.,MTT-23, (2), 246–253.CrossRefGoogle Scholar
  13. Ferris, L. P., King, B. G., Spence, P. W. andWilliams, H. B. (1936) Effect of electric shock on the heart.AIEE Trans.,55, 498–515.Google Scholar
  14. Fozzard, H. A. andSchoenberg, M. (1972) Strength-duration curves in cardiac Purkinje fibers.Am. J. Psychol.,73, 485–487.Google Scholar
  15. Gandhi, O. P., DeFord, J. F. andDanai, H. (1984) Impedance method for calculation of power deposition patterns in magnetically induced hyperthermia.IEEE Trans. Biomed. Eng.,BME-31, (10), 644–651.Google Scholar
  16. Geddes, L. A. andBaker, L. E. (1971) Response to passage of electric current through the body.J. Assoc. Adv. Med. Instr.,5, (1), 13–18.Google Scholar
  17. Geddes, L. A., Baker, L. E., Moore, A. G. andCoulter, T. W. (1969) Hazards in the use of low frequencies for the measurement of physiological events by impedance.Med. & Biol. Eng. & Comp.,7, 289–296.Google Scholar
  18. Geddes, L. A., Baker, L. E., Cabler, P. andBrittain, D. (1971) Response to passage of sinusoidal current through the body. InThe nervous system and electric currents, Vol. II,Wolfson, R. N. andSances, A. (Eds.), Plenum Press.Google Scholar
  19. Girvin, J. P., Marks, L. E., Antunes, J. L., Quest, D. O., O'Keefe, M. D., Ning, P. andDobelle, W. H. (1982) Electrocutaneous stimulation-I. The effects of stimulus parameters on absolute threshold.Percept. & Psych. 32, (6) 524–528.Google Scholar
  20. Hahn, J. F. (1958) Cutaneous vibratory thresholds for squarewave electrical pulses.Science,127, 879–880.Google Scholar
  21. Harris, R. (1971) Chronaxy. InLicht, S. (Ed.),Electrodiagnosis and electromyography (3rd edn.), E. Licht, New Haven.Google Scholar
  22. Hawkes, G. R. andWarm, J. S. (1960) The sensory range of electrical stimulation of the skin.Am. J. Psychol.,73, 485–487.CrossRefGoogle Scholar
  23. Heckman, J. R. (1972) Excitability curve: A new technique for assessing human peripheral nerve excitabilityin vivo.Neurology,22, 224–230.Google Scholar
  24. Hill, A. V., Fullerton, R. S., Katz, B. andSalandt, D. (1936/37) Nerve excitation by alternating current.Proc. Royal Soc. London, Series B—Biological Sciences,121, 74–132.CrossRefGoogle Scholar
  25. Irnich, W. (1980) The chronaxie time and its practical importance.PACE,3, 292–301.Google Scholar
  26. Jacobsen, J., Buntenkutter, S. andReinhard, H. J. (1975) Experimentelle untersuchungen an schweinen zur frage der mortalität durch sinusformige, phasengeschnittene sowie gleichgerichtete elektrische strome.Biomedizinische Technik,20, 99–107.CrossRefGoogle Scholar
  27. Jones, M. andGeddes, L. A. (1977) Strength-duration curves for cardiac pacemaking and ventricular fibrillation.Cardiovascular Res. Bull.,15 (4), 101–112.Google Scholar
  28. Kiselev, A. P. (1963) Threshold values of safe current at commercial frequency.Vopr. Ekekt-ovorud, Elekt-snabzh, i. Elekt. Izmerenii Sob. MITT-17, 47–58. CEGB Information services, Translation No. 1167.Google Scholar
  29. Kloss, D. A. andCarstensen, E. L. (1983) Effects of ELF electric fields on the isolated frog heart.IEEE Trans. Biomed. Eng. BME-30, (6), 347–348.Google Scholar
  30. Knickerbocker, G. G. (1973) Fibrillating parameters of direct and alternating (20 Hz) currents separately and in combination—an experimental study.IEEE Trans. Comm.,Com-21, (9), 1015–1027.CrossRefGoogle Scholar
  31. Kouwenhoven, W. B., Knickerbocker, G. G., Chestnut, R. W., Milnor, W. R. andSass, D. J. (1959) AC shocks of varying parameters affecting the heart.Trans. AIEE,73, part III, 163–169.Google Scholar
  32. Kugelberg, J. (1976) Electrical induction of ventricular fibrillation in the human heart.Scand. J. Cardiovasc. Surg.,10, 237–240.CrossRefGoogle Scholar
  33. Lane, J. F. andZebo, T. J. (1967) Volume potential fields developed in cats' limbs during the passage of constant current pulses. Digest, 7th Int. Conf. Med. and Biol. Eng., Stockholm, Aug. 14th–19th, 1967, 207.Google Scholar
  34. Larkin, W. D. andReilly, J. P. (1984) Strength/duration relationships for electrocutaneous sensitivity: stimulation by capacitive discharges.Perception & Psychophys.,36, (1), 68–78.Google Scholar
  35. Lövsund, P., Öberg, P. A., Nilsson, S. E. andReuter, T. (1980a) Magnetophosphenes: a quantitative analysis of thresholds.Med. & Biol. Eng. & Comp.,18, 326–334.CrossRefGoogle Scholar
  36. Lövsund, P., Öberg, P. A. andNillson, S. E. (1980b) Magneto- and electro-phosphenes: a comparative study.Med. & Biol. Eng. & Comp.,18, 758–784.CrossRefGoogle Scholar
  37. McNeal, D. R. (1976) Analysis of a model for excitation of myelinated nerve.IEEE Trans. Biomed. Eng.,BME-23 (4), 329–337.Google Scholar
  38. McRobbie, D. andFoster, M. A. (1985) Cardiac response to pulsed magnetic fields with regard to safety in NMR imaging.Phys. of Med. Biol.,30, (7), 695–702.CrossRefGoogle Scholar
  39. Mouchawar, G. A., Geddes, L. A., Bourland, J. D. andPearce, J. A. (1989) Ability of the Lapicque and Blair strength-duration curves to fit experimentally obtained data from the dog heart.IEEE Trans. Biomed. Eng.,36, 971–974.CrossRefGoogle Scholar
  40. Notermans, S. L. H. (1966) Measurement of the pain threshold determined by electrical stimulation and its clinical application, Part II: Method and factors possibly influencing the pain threshold.Neurology,16, 1071–1086.Google Scholar
  41. Pearce, J. A., Bourland, J. D., Neilsen, W., Geddes, L. A. andVoelz, M. (1982) Myocardial stimulation with ultrashort duration current pulse.PACE,5, 52–58.Google Scholar
  42. Rattay, F. (1986) Analysis of models for external stimulation of axons.IEEE Trans. Biomed. Eng.,BME-33, (10) 974–977.Google Scholar
  43. Reilly, J. P. (1987) Peripheral stimulation by pulsatile currents: Applications to time-varying magnetic field exposure. Report 87-100, June 1987, Metatec Associates Silver Spring, MD. (Available from Center for Devices & Radiological Health, US Food & Drug Admin., Rockville, MD. 20857).Google Scholar
  44. Reilly, J. P. (1989) Peripheral nerve stimulation by induced electric currents: exposure to time-varying magnetic fields.Med. & Biol. Eng. & Comp.,27, 101–110.Google Scholar
  45. Reilly, J. P. (1992)Electrical stimulation and electropathology. Cambridge University Press, New York.Google Scholar
  46. Reilly, J. P. andBauer, R. H. (1987) Application of a neuroelectric model to electrocutaneous sensory sensitivity: parameter variation study.IEEE Trans. Biomed. Eng.,BME-34, (9), 752–754.Google Scholar
  47. Reilly, J. P., Freeman, V. T. andLarkin, W. D. (1985) Sensory effects of transient electrical stimulation—evaluation with a neuroelectric model.IEEE Trans. Biomed. Eng.,BME-32, (12), 1001–1011.Google Scholar
  48. Rollman, G. B. (1975) Behavioral assessment of peripheral nerve function.Neurology,25, 339–342.Google Scholar
  49. Roth, B. J. andBasser, P. J. (1990) A model of the stimulation of a nerve fiber by electromagnetic induction.IEEE Trans. Biomed. Eng.,37, (6), 588–597.CrossRefGoogle Scholar
  50. Roy, O. Z. (1980) Summary of cardiac fibrillation thresholds for 60 Hz currents and voltages applied directly to the heart.Med. & Biol. Eng. & Comp.,18, 657–659.CrossRefGoogle Scholar
  51. Roy, O. Z., Mortimer, A. J., Trollope, B. J. andVilleneuve, E. J. (1985) Electrical stimulation of the isolated rabbit heart by short duration transients.Electrical shock safety criteria, InBridges, J. E., Ford, G. L., Sherman, F. A. andVainberg, M. (Eds.), Pergamon Press, New York.Google Scholar
  52. Roy, O. Z., Trollope, B. J. andScott, J. R. (1987) Measurement of regional cardiac fibrillation thresholds,Med. & Biol. Eng. & Comp.,25, 165–166.CrossRefGoogle Scholar
  53. Silny, J. (1986) The influence of threshold of the time-varying magnetic field in the human organism. InBiological effects of static and extremely low frequency magnetic fields,Bernhardt,J. H. (Ed.), MMV Medzin Verlag, Munchen.Google Scholar
  54. Smyth, P. D., Tarjan, P. P., Chernof, E. andBaker, N. (1976) The significance of electrode surface area and stimulating thresholds in permanent cardiac pacing.J. Thorac. and Card. Surg.,71, (4), 559–565.Google Scholar
  55. Spiegel, R. J. (1977) Magnetic coupling to a prolate spheroid model of a man.IEEE Trans. Pwr. App. and Sys.,PAS-96, (1), 208–212.MathSciNetGoogle Scholar
  56. Sugimoto, T., Schaal, S. F. andWallace, A. G. (1967) Factors determining vulnerability to ventricular fibrillation induced by 60-cps alternating current.Circulation Res.,21, 601–608.Google Scholar
  57. Tasaki, I. andSato, M. (1951) On the relation of the strength-frequency curve in excitation by alternating current to the strength-duration and latent addition curves of the nerve fibre.J. of Gen. Physiol.,34, 273–288.Google Scholar
  58. Thalen, H. J. T., Berg, J. V. P., Heide, J. N. andNieveen, J. (1975)The artificial cardiac pacemaker, Van Gorum, Assen, The Netherlands.Google Scholar
  59. Voorhes, W. D., Foster, K. S., Geddes, L. A. andBabbs, C. F. (1983) Safety factor for transchest pacing.Proc. 36th ACEMB Conference, Columbus, Ohio, Sept. 12th–14th.Google Scholar
  60. Watson, A. B., Wright, J. S. andLoughman, J. (1973) Electrical thresholds for ventricular fibrillation in man.Med. J. of Australia,1, 1179–1182.Google Scholar
  61. Weirich, J., Hohnloser, S. andAntoni, H. (1983) Factors determining the susceptibility of the isolated guinea pig heart to ventricular fibrillation induced by sinusoidal alternating current at frequencies from 1 to 1000 Hz.Basic Res. Cardiology,78, 604–615.CrossRefGoogle Scholar
  62. Weirich, J., Haverkampf, K. andAntoni, A. (1985) Ventricular fibrillation of the heart induced by electric current.Rev. Gen. de l'Elect.,11, 833–843.Google Scholar
  63. Willis, R. J. andBrooks, W. M. (1984) Potential hazards of NMR imaging. No evidence of the possible effects of static and changing magnetic fields on cardiac function of the rat and guinea pig.Magnetic Resonance Imaging,2, 89–95.CrossRefGoogle Scholar
  64. Wyss, A. M. (1963) Die Reizwirkung sinuförger Wehselströme, untersucht, bis zur oberen Grenze der Niederfrequenz (1000 Hz).Helvetica et Physiologica et Pharmacologica,21, 419–443.Google Scholar

Copyright information

© IFMBE 1991

Authors and Affiliations

  • J. P. Reilly
    • 1
  1. 1.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA

Personalised recommendations