‘Objective’ algorithm for maximum frequency estimation in Doppler spectral analysers

  • T. D’Alessio


Real-time spectral analysis is often used to detect the maximum frequency envelope of Doppler signals, and thus the so-called spectral broadening, which is claimed to be a sensitive indicator of arterial stenosis. However, a rational criterion for the estimation of maximum frequencies is lacking. In the paper an ‘objective’ algorithm which takes account of the specificity and the sensitivity of the procedure of maximum frequency detection is proposed. This algorithm is based on the statistical characteristics of FFT spectral estimators, and allows thresholds to be set to be used in two-step decision procedures. The proposed algorithm can be easily implemented on microcomputers and/or commercial spectral analysers. The results obtained are fairly independent of the operator’s subjective judgement and spectral analyser gain.


Decision procedures Doppler signals Spectral analysis Spectral broadening 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angelsen, B. A. J. (1981) Instantaneous frequency, mean frequency and variance of mean frequency estimators for ultrasonic blood velocity doppler signals.IEEE Trans.,BME-28, 733–741.Google Scholar
  2. Brody, W. R. andMeindl, J. D. (1974) Theoretical analysis of the CW doppler ultrasonic flow meter.,BME-21, 183–192.Google Scholar
  3. Brown, P. M., Johnston, K. W., Kassam, M. andCobbold, R. S. C. (1982) A critical study of ultrasound doppler spectral analysis for detecting carotid disease.Ultrasound in Med. & Biol.,8, 512–523.CrossRefGoogle Scholar
  4. D’Alessio, T., Di Giuliomaria, C., Sacco, R. andCavallaro, A. (1983) On the use of autoregressive time series in the modeling of doppler signals for diagnostic purposes.Clin. Phys. & Physiol. Meas.,4, 395–401.CrossRefGoogle Scholar
  5. Greene, F. M., Beach, K., Strandness, D. E., Fell, G. andPhillips, D. J. (1982) Computer based pattern recognition of carotid arterial disease using pulsed doppler ultrasound.Ultrasound in Med. & Biol. 8, 161–176.CrossRefGoogle Scholar
  6. Jenkins, G. M. andWatts, D. G. (1968)Spectral analysis and its applications. Holden Day.Google Scholar
  7. Johnston, K. W., Kassam, M., andCobbold, R. S. C. (1982) Online identifying and quantifying Doppler ultrasound waveforms.Med. & Biol. Eng. & Comput.,20, 336–342.CrossRefGoogle Scholar
  8. Kassam, M. S., Cobbold, R. S. C., Johnston, K. W. andGraham, C. M. (1982) Method for estimating the doppler mean velocity waveform.Ultrasound in Med. & Biol.,8, 537–544.CrossRefGoogle Scholar
  9. Oppenheim, A. V. andShafer, R. W. (1975)Digital signal processing. Prentice-Hall.Google Scholar
  10. Sherriff, S. B., Barber, D. C., Martin, T. R. P. andLakeman J. M. (1982) Use of principal component factor analysis in the detection of carotid artery disease from Doppler ultrasound.Med. & Biol. Eng. & Comput.,20, 351–356.CrossRefGoogle Scholar
  11. Skidmore, R. andWoodcock, J. P. (1980a) Physiological interpretation of doppler shift waveforms I.Ultrasound in Med. & Biol.,6, 7–10.CrossRefGoogle Scholar
  12. Skidmore, R. andWoodcock, J. P. (1980b) Physiological interpretation of doppler shift waveforms II.,6, 219–225.CrossRefGoogle Scholar
  13. Skidmore, R. andWoodcock, J. P. (1980c) Physiological interpretation of doppler shift waveforms III.,6, 227–231.CrossRefGoogle Scholar

Copyright information

© IFMBE 1985

Authors and Affiliations

  • T. D’Alessio
    • 1
  1. 1.Dipartimento Scienza e Tecnica dell’Informazione e della Comunicazione, Facoltà di IngegneriaUniversità di RomaRomaItaly

Personalised recommendations