Letters in Peptide Science

, Volume 7, Issue 6, pp 347–351 | Cite as

An efficient Fmoc strategy for the rapid synthesis of peptide para-nitroanilides

Article

Summary

A new strategy has been developed for the rapid synthesis of peptide para-nitroanilides (pNA). The method involves derivatization of commercially available tritylchloride resin (TCP-resin) with 1,4-phenylenediamine, subsequent coupling with desired amino acids by the standard Fmoc protocol, and oxidation of the intermediate para-aminoanilides (pAA) with Oxone®. This procedure allows easy assembly of the desired para-aminoanilides (pAA) on standard resin and efficient oxidation and purification of the corresponding para-nitroanilides (pNA). The method allows easy access to any desired peptide para-nitroanilides, which are useful substrates for the characterization and study of proteolytic enzymes.

Key words

chromogenic substrates oxidation Oxone® para-nitroanilides solid-phase synthesis 

Abbreviations

pNA

para-nitroanilide,p-nitroanilide

pAA

para-aminoanilide,p-aminoanilide

DMF

N,N-dimethylformamide

rp-HPLC

reversed phase high performance liquid chromatography

DIPEA

N,N-diisopropylethylamine

Fmoc

9-fluorenylmethyloxycarbonyl

DCM

dichloromethane

HBTU

2-(H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium, hexafluorophosphate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For some examples of the use of peptide para-nitroanilides see; Hou, W.C., Chen, H.J., Chen, T.E. and Lin, Y.H., Electrophoresis 20, (1999), 486; Gurtu, V., Kain, S.R. and Zhang, G., Analytical Biochemistry 251, (1997), 98; Laine, J., Beattie, M. and LeBel, D., Pancreas 8 (1993), 383; Claeson, G., Aurell, L., Friberger, P., Gustavsson, S. and Karlsson, G., Haemostasis, 7 (1978) 62 and references cited therein.PubMedCrossRefGoogle Scholar
  2. 2.
    Irie, K., Mohan, P.M., Sasaguri, Y., Putnak, R. and Padman-abhan, R., Gene, 75 (1989) 197.PubMedCrossRefGoogle Scholar
  3. 3.
    Alsina, J., Yokum T.S., Albericio, F. and Barany, G., J. Org. Chem., 64 (1999) 8761.PubMedCrossRefGoogle Scholar
  4. 4.
    Hojo, K., Maeda, M., Iguchi, S., Smith, T., Okamoto, H. and Kawasaki, K., Chem. Pharm. Bull., 48 (2000) 1740.PubMedGoogle Scholar
  5. 5.
    Bernhardt, A., Drewello, M., and SchutKowski, M., J. Peptide Research, 50 (1997) 143.CrossRefGoogle Scholar
  6. 6.
    Kaspari, A., Schierhorn, A. and SchutKowski, M., Int. J. Peptide Protein Res., 48 (1996) 486.CrossRefGoogle Scholar
  7. 7.
    Burdick, P.J., Struble, M.E. and Burnier, J., Tetrahedron Letters, 34 (1993) 2589.CrossRefGoogle Scholar
  8. 8.
    Mergler, M., Dick, F., Gosteli, J. and Nyfeler, R., Letters in Peptide Science, 7 (2000) 1.CrossRefGoogle Scholar
  9. 9.
    TCP-resin available from: PepChem (Goldammer and Clausen) Im Winkelrain 73, D-72076 Tubingen, Germany.Google Scholar
  10. 10.
    Kennedy, R.J. and Stock, R.M., J. Org. Chem., 25 (1960) 1901.CrossRefGoogle Scholar
  11. 11.
    Webb, K.S. and Seneviratne, V., Tetrahedron Letters, 36 (1995) 2377.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • G. Abbenante
    • 1
  • D. Leung
    • 1
  • T. Bond
    • 1
  • D. P. Fairlie
    • 1
  1. 1.Institute for Molecular BioscienceUniversity of QueenslandBrisbaneAustralia

Personalised recommendations