Advertisement

Online identifying and quantifying Doppler ultrasound waveforms

  • K. W. Johnston
  • M. Kassam
  • R. S. C. Cobbold
Article

Abstract

A microcomputer-based system is described for automatically identifying and quantifying the maximum peripheral arterial velocity waveforms obtained with a Doppler ultrasound spectrum analyser. A waveform identification algorithm is used to determine the beginning and end points of each waveform without the use of an e.c.g. trigger. A second algorithm calculates the pulsatility index. Experience in the use of these algorithms over a two-year period on 2500 patients is discussed. On 400 consecutive normal and abnormal recordings, wareform identification was 96% correct.

Keywords

Arterial disease Doppler ultrasound Microcomputer Pulsatility index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coghlan, B. A. andTaylor, M. G. (1980) Digitiser/processor for extraction of clinical parameters from Doppler-shift waveforms.Med. & Biol. Eng. & Comput.,18, 81–86.CrossRefGoogle Scholar
  2. Fitzgerald, D. E. andCarr, J. (1975) Doppler ultrasound diagnosis and classification as an alternative to arteriography.Angiology,26, 283–288.Google Scholar
  3. Gibbons, D. T., Evans, D. H., Barrie, W. W. andCosgriff, P. S. (1981) Real-time calculation of ultrasonic pulsatility index.Med. & Biol. Eng. & Comput.,19, 28–34.Google Scholar
  4. Gosling, R. G. andKing, D. H. (1974) Arterial assessment by Doppler-shift ultrasound.Proc. R. Soc. Med.,67, 447–449.Google Scholar
  5. Harris, P. L., Taylor, L. A., Cave, F. D. andCharlesworth, D. (1974) The relationship between Doppler ultrasound assessment and angiography in occlusive arterial disease of the lower limbs.Surg. Gynecol. Obstet.,138, 911–914.Google Scholar
  6. Johnston, K. W., Maruzzo, B. C. andCobbold, R. S. C. (1978) Doppler methods for quantitative measurement and localization of peripheral arterial occlusive disease by analysis of the blood flow velocity waveform.Ultrasound Med. Biol.,4, 209–223.CrossRefGoogle Scholar
  7. Johnston, K. W., Cobbold, R. S. C., Kassam, M. S. andArato, P. G. (1981) Real-time frequency analysis of peripheral arterial Doppler signals. InNoninvasive cardiovascular diagnosis,Diethrich (Ed.), 2nd edn., PSG Pub. Co., Littleton, Mass., USA, Chap. 25, 233–248.Google Scholar
  8. Johnston, K. W., Kassam, M. andCobbold, R. S. C. (1981) Processing and waveform analysis—Problems and solutions. InNon-invasive diagnostic techniques in vascular disease,Bernstein (Ed.), 2nd edn., Mosby, St. Louis, USA.Google Scholar
  9. Skidmore, R. andWoodcock, J. P. (1980) Physiological interpretation of Doppler-shift waveforms—I Theoretical considerations.Ultrasound Med. Biol.,6, 7–10.CrossRefGoogle Scholar
  10. Skidmore, R. andWoodcock, J. P. (1980) Physiological interpretation of Doppler-shift waveforms—II Validation of the Laplace transform method for characterization of the common femoral blood-velocity/time waveform.Ultrasound Med. Biol.,6, 219–225.CrossRefGoogle Scholar
  11. Skidmore, R., Woodcock, J. P., Wells, P. N. T., Bird, D. andBaird, R. N. (1980) Physiological interpretation of Doppler-shift waveforms—III Clinical results.Ultrasound Med. Biol.,6, 227–231.CrossRefGoogle Scholar

Copyright information

© IFMBE 1982

Authors and Affiliations

  • K. W. Johnston
    • 1
  • M. Kassam
    • 1
  • R. S. C. Cobbold
    • 1
  1. 1.Institute of Biomedical EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations