Advertisement

Algorithm for detecting the first and the second heart sounds by spectral tracking

  • A. Iwata
  • N. Ishii
  • N. Suzumura
  • K. Ikegaya
Article

Abstract

A detection algorithm for the first and the second heart sounds, which is one of the most important problems in an automatic diagnostic system for phonocardiograms, has been developed. It is based on the frequency-domain characteristics of heart sounds analysed by a linear-prediction method. The performance of the algorithm has been evaluated in 187 samples that contain 881 cardiac cycles including normal and abnormal subjects. The algorithm uses low frequency spectral tracking for the time series of the phonocardiogram. It can track spectral level smoothly so that it is fairly effective for the detection of heart sounds. This tracking procedure can be used in other applications such as electroencephalogram processing.

Keywords

First heart sounds Linear prediction Phonocardiogram Second heart sounds Spectral tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolph, R. J., Stephens, J. F. andTanaka, K. (1970) The clinical value of frequency analysis of the first heart sound in myocardial infarction.Circulation,41, 1003.Google Scholar
  2. Akaike, H. (1970) On a semi-automatic power spectrum estimation procedure. Proceedings of the 3rd Hawaii International Conference on System Sciences, 944–977.Google Scholar
  3. Itakura, F. andSaito, S. (1970) A statistical method for estimation of speech spectral density and formant frequencies.Trans. Inst. Electron. & Commun. Eng. Japan,53-A.Google Scholar
  4. Iwata, A. andSuzumura, N. (1976) PCG classification by linear prediction analysis.Bull. Nagoya Institute of Technology,28, 377–384.Google Scholar
  5. Iwata, A., Suzumura, N. andIkegaya, K. (1977) Pattern classification of the phonocardiogram using linear prediction analysis.Med. & Biol. Eng. & Comput.,15, 407–412.Google Scholar
  6. Makhoul, J. (1975) Linear prediction: a tutorial review.Proc. IEEE,63, 561–580.CrossRefGoogle Scholar
  7. Usui, S. andIkegaya, K. (1978) Low order low-pass differentiation algorithm for data processing and its evaluation.Trans. Inst. Electron. & Commun. Eng. Japan,61-D, 850–857.Google Scholar
  8. Van Vollenhoven, E., van Rotterdam, A., Durenbos, T. andSchlesinger, F. G. (1968) Frequency analysis of heart murmurs.Med. & Biol. Eng.,7, 227.Google Scholar
  9. Yoganathan, A. P., Gupta, R. andCorcoran, W. H. (1976) The fast Fourier transform in the analysis of biomedical data.Med. & Biol. Eng.,14, 239–245.Google Scholar
  10. Yoganathan, A. P., Gupta, R., Udwadia, F. E., Miller, J. W., Corcoran, W. H., Sarma, R., Johnson, J. L. andBing, R. J. (1976) Use of the fast Fourier transform for the frequency analysis of the first heart sound in normal man.Med. & Biol. Eng.,14, 69–73.Google Scholar
  11. Yoganathan, A. P., Gupta, R., Udwadia, F. E., Corcoran, W. H., Sarma, R., andBing, R. J. (1976) Use of the fast Fourier transform in the frequency analysis of the second heart sound in normal man.Med. & Biol. Eng.,14, 455–460.Google Scholar
  12. Yokoi, M. (1976) Clinical evaluation on 5 years' experience of automated phonocardiogram analysis. Digest of the 11th International Conference on Medical and Biological Engineering—Ottawa 25.6.Google Scholar
  13. Yoshimura, S. et al. (1973) Phonocardiogram. Clinic All-Round22, 40–46Google Scholar

Copyright information

© IFMBE 1980

Authors and Affiliations

  • A. Iwata
    • 1
  • N. Ishii
    • 1
  • N. Suzumura
    • 1
  • K. Ikegaya
    • 2
  1. 1.Department of Information EngineeringNagoya Institute of TechnologyNagoyaJapan
  2. 2.Faculty of EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations