Advertisement

Medical and Biological Engineering and Computing

, Volume 28, Issue 5, pp 407–415 | Cite as

Technique for the evaluation of derivatives from noisy biomechanical displacement data using a model-based bandwidth-selection procedure

  • M. D'Amico
  • G. Ferrigno
Computing and Data Processing

Abstract

Smoothing and differentiation of noisy signals are common problems whenever it is difficult or impossible to obtain derivatives by direct measurement. In biomechanics body displacements are frequently assessed and these measurements are affected by noise. To avoid high-frequency noise magnification, data filtering before differentiation is needed. In the approach reported here an autoregressive model is fitted to the signal. This allows the evaluation of the filter bandwidth and the extrapolation of the data. The extrapolation also reduces edge effects. Low-pass filtering is performed in the frequency domain by a linear phase FIR filter and differentiation is performed in the frequency domain. The reported results illustrate the accuracy of the algorithm and its speed (mainly due to the use of the FFT algorithm). Automatic bandwidth selection also guarantees the homogeneity of the results.

Keywords

AR modelling Derivative assessment FIR filtering Spectral estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, M. (1969a) Fitting autoregressive models for prediction.Ann. Inst. Statist. Math.,21, 243–247.zbMATHMathSciNetGoogle Scholar
  2. Akaike, M. (1969b) Power spectrum estimation through autoregression model fitting.,21, 407–419.zbMATHMathSciNetGoogle Scholar
  3. Akaike, M. (1970a) On a semi-automatic spectrum estimation procedure. Proc. 3rd Haway Int. Conf. System Sci., Part 2, 974–977.Google Scholar
  4. Akaike, M. (1970b) Statistical predictor identification.Ann. Inst. Statist. Math.,22, 203–217.zbMATHMathSciNetGoogle Scholar
  5. Akaike, M. (1971) Autoregressive model fitting for control.,23, 163–180.zbMATHMathSciNetGoogle Scholar
  6. Akaike, M. (1972) Use of an information theoretic quantity for statistical model identification. Proc. 5th Haway Int. Conf. System Sci., 249–250.Google Scholar
  7. Akaike, M. (1974) A new look at the statistical model identification.IEEE Trans.,AC-19, 716–723.zbMATHMathSciNetGoogle Scholar
  8. Anderssen, R. S. andBloomfield, P. (1974) Numerical differentiation procedures for non-exact data.Numer. Math.,22, 157–182.zbMATHMathSciNetCrossRefGoogle Scholar
  9. Blackman, R. B. andTukey, J. W. (1958)The measurement of power spectra from the point of view of communications engineering, Dover Publications Inc., New York.Google Scholar
  10. Burg, S. P. (1967) Maximum entropy spectral analysis. Proc. 37th Meeting Society of Exploration Geophysicists, Oklahoma City, Oklahoma.Google Scholar
  11. Cappozzo, A., Leo, T. andPedotti, A. (1975) A general computing method for the analysis of human locomotion.J. Biomech.,8, 307–344.CrossRefGoogle Scholar
  12. Cooley, J. W. andTukey, J. W. (1965) An algorithm for machine calculation of complex Fourier series.Math. Comput.,19, 297–301.zbMATHMathSciNetCrossRefGoogle Scholar
  13. Craven, P. andWahba, G. (1979) Smoothing noisy data with spline functions.Numer. Math.,31, 377–403.zbMATHMathSciNetCrossRefGoogle Scholar
  14. Cullum, J. (1971) Numerical differentiation and regularization.SIAM J. on Numer Computat.,8, 254–265.zbMATHMathSciNetCrossRefGoogle Scholar
  15. Cullum, J. (1979) The effective choice of the smoothing norm in regularization.Math. of Computat.,33, 149–170.zbMATHMathSciNetCrossRefGoogle Scholar
  16. D'Amico, M. andFerrigno, G. (in press) Estimation of velocities and accelerations from noisy kinematic data. Proc. ISBS 6th Int. Symp. of Biomech. in Sports, Bozeman, Montana, (in press).Google Scholar
  17. Durbin, J. (1960) The fitting of time series models.Rev. Inst. Int. de Stat.,28, 233–244.zbMATHCrossRefGoogle Scholar
  18. Ferrigno, G. andPedotti, A. (1985) ELITE: a digital dedicated hardware system for movement analysis via real-time TV signal processing.IEEE Trans.,BME-32, 943–950.Google Scholar
  19. Gasser, T., Kohler, W., Jannen-Steinmetz, C. andSroka, L. (1986) The analysis of noisy signals by nonparametric smoothing and differentiation.,BME-32, 1129–1133.Google Scholar
  20. Hadamard, J. (1902) Sur les problemes aux derivees partielles et leurs signification physiques.Bull. University of Princeton, 13.Google Scholar
  21. Harris, F. J. (1978) On the use of windows for harmonic analysis with the discrete Fourier transform.Proc. IEEE,66, 51–83.Google Scholar
  22. Jetto, L. (1985) Small-computer procedure for optimal filtering of haemodynamic data.Med. & Biol. Eng. & Comput.,23, 203–208.Google Scholar
  23. Kay, S. N. andMarple, S. L. (1981) Spectrum analysis—a modern perspective.Proc. IEEE,69, 1380–1419.Google Scholar
  24. Lanshammar, H. (1981) Precision limits on derivatives obtained from measurement data. InBiomechanics VII-A.Morecki, A., Fidelus, K., Kedzior, K. andWit, A. (Eds.), Polish Publishers' House and University Park Press, Baltimore.Google Scholar
  25. Lanshammar, H. (1982a) On practical evaluation of differentiation techniques for human gait analysis.J. Biomech.,15, 99–105.CrossRefGoogle Scholar
  26. Lanshammar, H. (1982b) On precision limits for derivatives numerically calculated from noisy data.,15, 459–470.CrossRefGoogle Scholar
  27. Levinson, N. (1947) The Wiener (root mean square) error criterion in filter design and prediction.J. Math. Phys.,25, 261–278.MathSciNetGoogle Scholar
  28. Makhoul, J. (1975) Linear prediction: a tutorial review.Proc. IEEE,63, 561–580.Google Scholar
  29. Marple, S. L. (1987)Digital spectral analysis with applications. Prentice-Hall Inc., Englewood Cliffs, New Jersey.Google Scholar
  30. Murphy, M. C. andMann, R. W. (1987) A comparison of smoothing and digital filtering/differentiation of kinematic data. 9th Ann. Conf. of IEEE Eng. in Med. & Biol. Soc., Boston, Massachusetts, 13th–16th Nov., 852–853.Google Scholar
  31. Nuttall, A. H. (1976) Spectral analysis of a univariate process with bad data points, via maximum entropy, and linear predictive techniques. Naval Underwater System Center, Tech. Rep. 5303, New London, Connecticut.Google Scholar
  32. Oppenheim, A. V. andSchafer, R. W. (1975)Digital signal processing. Prentice-Hall Inc., Englewood Cliffs, New Jersey.zbMATHGoogle Scholar
  33. Parzen, E. (1974) Some recent advances in time series modeling.IEEE Trans.,AC-19, 723–730.zbMATHMathSciNetGoogle Scholar
  34. Pezzack, J. C., Norman, R. W. andWinter, D. A. (1977) An assessment of derivative determining techniques used for motion analysis.J. Biomech.,10, 377–382.CrossRefGoogle Scholar
  35. Rabiner, L. R. andGold, B. (1975)Theory and application of digital signal processing. Prentice-Hall Inc., Englewood Cliffs, New Jersey.Google Scholar
  36. Reinsch, C. H. (1967) Smoothing by spline functions.Numer. Math.,10, 177–183.zbMATHMathSciNetCrossRefGoogle Scholar
  37. Reinsch, C. H. (1971) Smoothing by spline functions II.,16, 451–454.CrossRefMathSciNetGoogle Scholar
  38. Schuster, A. (1898) On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena.Terrestrial Magnetism,3, 13–41.Google Scholar
  39. Schuster, A. (1899) The periodogram of magnetic declination as obtained from the records of the Greenwich Observatory during the years 1871–1895.Trans. Cambridge Philosophical Soc.,18, 107–135.Google Scholar
  40. Slepian D. (1976) On bandwidth.Proc. IEEE,64, 292–300.MathSciNetCrossRefGoogle Scholar
  41. Soudan, K. andDierckx, P. (1979) Calculation of derivatives and Fourier coefficients of human motion data, while using spline functions.J. Biomech.,12, 21–26.CrossRefGoogle Scholar
  42. Ulrych, T. J. andClayton, R. W. (1976) Time series modeling and maximum entropy.Phys. Earth Planetary Interior,12, 188–200.CrossRefGoogle Scholar
  43. Utreras, F. (1980) A package for smoothing noisy data with splines. Technical Report MA-80-B-209, Department of Mathematics, University of Chile, Santiago.Google Scholar
  44. Vaughan, C. L. (1982) Smoothing and differentiation of displacement-time data: an application of splines and digital filtering.Int. J. Biomed. Comput.,2, 349–362.Google Scholar
  45. Wiener, N. (1949)On the interpolation, smoothing and extrapolation of stationary time series. Wiley, New York.Google Scholar
  46. Winter, D. A. (1987)The biomechanics and motor control of human gait. University of Waterloo Press, Dana Porter Library, Waterloo, Ontario, Canada.Google Scholar
  47. Woltring, H. J. (1985) On optimal smoothing and derivative estimation from noisy displacement data in biomechanics. InHuman movement science, 4 (3), Elsevier Science Publishers B.V., North-Holland, 229–245.Google Scholar
  48. Woltring, H. J. (1986) A FORTRAN package for generalized, cross-validatory spline smoothing and differentiation.Adv. Eng. Software,8, 104–113.CrossRefGoogle Scholar
  49. Wood, G. A. (1982) Data smoothing and differentiation procedures in biomechanics.Exercise & Sport Sci. Rev.,10, 308–362.Google Scholar

Copyright information

© IFMBE 1990

Authors and Affiliations

  • M. D'Amico
    • 1
  • G. Ferrigno
    • 1
  1. 1.Centro di BioingegneriaFondazione Pro JuventuteMilanoItaly

Personalised recommendations