Advertisement

Elimination of breathing artefacts from impedance cardiograms at rest and during exercise

  • O. Eiken
  • P. Segerhammar
Physiological Measurement

Abstract

A signal processing technique was developed by which breathing artefacts can be eliminated from impedance cardiograms. The breathing component of the transthoracic impedance signal is identified by a moving-window technique using linear regression analysis, the window span being determined by the current R-R interval of the ECG. Satisfactory beat-by-beat stroke volume measurements were obtained when the method was applied to eliminate simulated breathing artefacts superimposed on distortion-free impedance signals from human subjects. In subjects performing moderate to heavy exercise the potential capability of the method to retrieve the cardiogenic impedance signal in the presence of severe interference caused by exercise hyperpnoea was demonstrated, permitting distortion-free beat-by-beat stroke volume estimations.

Keywords

Breathing-artefact elimination Cardiac output Impedance cardiography Muscular exercise Stroke volume 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basset Frey, M. A. andDoerr, B. M. (1983) Correlations between ejection times measured from the carotid pulse contour and the impedance cardiogram.Aviat. Space Environ. Med.,54, 894–897.Google Scholar
  2. Bevegård, S., Holmgren, A. andJonsson, B. (1960) The effect of body position on the circulation at rest and during exercise, with special reference to the influence on the stroke volume.Acta Physiol. Scand.,49, 279–298.CrossRefGoogle Scholar
  3. Boer, P., Roos, J. C., Geyskes, G. G. andDorhout Mees, E. J. (1979) Measurement of cardiac output by impedance cardiography under various conditions.Am. J. Physiol.,237, (Heart Circ. Physiol. 6), H491-H496.Google Scholar
  4. Denniston, J. C., Maher, J. T., Reeves, J. T., Cruz, J. C., Cymerman, A. andGrover, R. F. (1976) Measurement of cardiac output by electrical impedance at rest and during exercise.J. Appl. Physiol.,40, 91–95.Google Scholar
  5. Edmunds, A. T., Godfrey, S. andTrolley, M. (1982) Cardiac output measured by transthoracic impedance cardiography at rest, during exercise and at various lung volumes.Clin. Sci.,63, 107–113.Google Scholar
  6. Eiken, O. andBjurstedt, H. (1985) Cardiac responses to lower body negative pressure and dynamic leg exercise.Eur. J. Appl. Physiol.,54, 451–455.CrossRefGoogle Scholar
  7. Geddes, L. A. andSadler, C. (1973) The specific resistance of blood at body temperature.Med. & Biol. Eng.,11, 336–339.Google Scholar
  8. Hill, D. W. andMerrifield, A. J. (1976) Left ventricular ejection and the Heather index measured by non-invasive methods during postural changes in man.Acta Anaesth. Scand.,20, 313–320.CrossRefGoogle Scholar
  9. Kubicek, W. G., Karnnegis, J. N., Patterson, R. P., Witsoe, D. A. andMattson, R. H. (1966) Development and evaluation of an impedance cardiac output system.Aerospace Med.,37, 1208–1212.Google Scholar
  10. Kubicek, W. G., Kottke, F. J., Ramos, M. U., Patterson, R. P., Witsoe, D. A., LaBree, J. W., Remole, W., Layman, T. E., Schoening, H. andGaramela, J. T. (1974) The Minnesota impedance cardiograph—theory and applications.Biomed. Eng.,9, 410–416.Google Scholar
  11. Lind, F. G., Truvé, A. B. andLindborg, B. P. O. (1984) Microcomputer-assisted on-line measurement of breathing pattern and occlusion pressure.J. Appl. Physiol. (REEP),56, 235–239.Google Scholar
  12. Lindborg, B., Wigertz, O. andÖdman, T. (1969) A beat-to-beat heart-rate meter with linear analog output for muscular exercise studies. Rep. Lab. Aviat. Naval Med., Karolinska Institutet, Stockholm, 23.Google Scholar
  13. Miyamoto, Y., Tamura, T. andMikami, T. (1981) Automatic determination of cardiac output using an impedance plethysmography.Biotelem. Patient Monit.,8, 189–203.Google Scholar
  14. Muzi, M., Ebert, T. J., Tristani, F. E., Jeutter, D. C., Barney, J. A. andSmith, J. J. (1985) Determination of cardiac output using ensemble-averaged impedance cardiograms.J. Appl. Physiol.,58, 200–205.Google Scholar
  15. Permutt, S. andWise, R. A. (1986) Mechanical interaction of respiration and circulation. InHandbook of Physiology Vol. III. Section 3, The respiratory system. American Physiological Society, 647–656.Google Scholar
  16. Smith, J. J., Bush, J. E., Wiedmeier, V. T. andTristani, F. E. (1970) Application of impedance cardiography to study of postural stress.J. Appl. Physiol.,29, 133–137.Google Scholar
  17. Tedner, B. (1983) Equipment using an impedance technique for automatic recording of fluid-volume changes during haemodialysis.Med. & Biol. Eng. & Comput.,21, 285–290.Google Scholar
  18. Wigertz, O. (1969) A low-resistance flowmeter for wide-range ventilatory measurement.Respirat. Physiol.,7, 263–270.CrossRefGoogle Scholar

Copyright information

© IFMBE 1988

Authors and Affiliations

  • O. Eiken
    • 1
  • P. Segerhammar
    • 1
  1. 1.Department of Environmental MedicineKarolinska InstitutetStockholmSweden

Personalised recommendations