Prognostic value of heart rate variability after myocardial infarction. A comparison of different data-processing methods

  • M. Malik
  • T. Cripps
  • T. Farrell
  • A. J. Camm
Physiological Measurement

Abstract

Reduced heart rate variability (HRV) has been reported as a predictor of mortality in recent myocardial infarction patients. However, its automated assessment in long-term ECG recordings is complicated by recording noise and beat-recognition errors which necessitate filtering of the computer-established sequence of beat-to-beat intervals, and visual checking and manual editing of the long-term recordings, making the whole method operator-dependent. To develop a fully automated method for analysis of HRV from 24 h ECG recordings, five filtering algorithms were combined with three methods of expressing HRV numerically and used to compare two groups of patients undergoing 24 h tape recordings of the ECG within the first two weeks after myocardial infarction. One group comprised 15 patients who later suffered death or ventricular tachycardia, the other group comprised 15 randomly selected uncomplicated cases. Using the same two groups of patients, three different methods of expressing HRV on a beat-to-beat basis were also compared empirically. The results show that alternative, operator-independent methods for establishing HRV from continuous long-term ECG recordings of postmyocardial infarction patients seem to be as effective as previously reported methods which rely on operator-dependent data post-processing techniques.

Keywords

Automated filtering of long-term ECG data Long-term ECG processing Measurement of heart rate variability Recognition artefacts 

References

  1. Airaksinen, K. E., Ikaheimo, M. J., Linnaluoto, M. K., Niemela, M. andTakkunen, J. T. (1987) Impaired vagal heart rate control in coronary artery disease.Br. Heart J.,58, 592–597.Google Scholar
  2. Baselli, G., Cerutti, S., Civardi, S., Lombardi, F., Malliani, A., Merri, M., Pagani, M. andRizzo, G. (1987) Heart rate variability signal processing: a quantitative approach as an aid to diagnosis in cardiovascular pathologies.Int. J. Biomed. Comput.,20, 51–70.CrossRefGoogle Scholar
  3. Berger, R. D., Akselrod, S., Gordon, D. andCohen, R. J. (1986) An efficient algorithm for spectral analysis of heart rate variability.IEEE Trans.,BME-33, 900–904Google Scholar
  4. Bigger, J. T., Kleiger, R. E., Fleiss, J. L., Rolnitzky, L. M., Steinman, R. C., Miller, J. P. et al. (1988) Compotents of heart rate variability measured during healing of acute myocardial infarction.Am. J. Cardiol.,61, 208–215.CrossRefGoogle Scholar
  5. Birman, K. P., Rolnitzky, L. M. andBigger, J. T. (1978) A shape oriented system for automated Holter ECG analysis. InComputers in cardiology. Proc., IEEE Computer Society, 217–220.Google Scholar
  6. Bland, M. (1987)An introduction to medical statistics. Oxford Medical, Oxford.Google Scholar
  7. de Nicolo, M., Mastropasqua, F., Mangini, S. G., Scrutinio, D. andRizzon, P. (1988) ECG D analysis program with personal computer for evaluation of heart rate variability (abstract).Eur. Heart. J., Suppl. 1,9, 137.Google Scholar
  8. Ewing, D. J., Neilson, J. M. M. andTravis, P. (1984) New method for assessing cardiac parasympathetic activity using 24 hour electrocardiograms.Br. Heart. J.,52, 396–402.Google Scholar
  9. Kamath, M. V., Ghista, D. N., Fallen, E. L., Fitchett, D., Miller, D. andMcKelvie, R. (1987) Heart rate variability power spectrogram as a potential noninvasive signature of cardiac regulatory system response, mechanisms, and disorders.Heart Vessels,3, 33–41.CrossRefGoogle Scholar
  10. Kleiger, R. E., Miller, J. P., Bigger, J. T., Moss, A. J. et al. (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction.Am. J. Cardiol.,59, 256–262.CrossRefGoogle Scholar
  11. Lombardi, F., Sandrone, G., Pernpruner, S., Sala, R., Garimoldi, M., Cerutti, S., Baselli, G., Pagani, M. andMalliani, A. (1987) Heart rate variability as an index of sympathovagal interaction after acute myocardial infarction.,60, 1239–1245.CrossRefGoogle Scholar
  12. Malik, M., Cripps, T., Farrell, T. andCamm, A. J. (1989) Heart rate variability in relation to prognosis after myocardial infarction-long term spectral analysis.J. Electrophysiol.,3, 9–23.CrossRefGoogle Scholar
  13. Myers, G. A., Martin, G. J., Magin, N. M., Barnett, P. S., Schaad, J. W., Weiss, J. S., Lesch, M. andSinger, D. H. (1986) Power spectral analysis of heart rate variability in sudden cardiac death: comparison to other methods.IEEE Trans,BME-33, 1149–1156.Google Scholar
  14. Pagani, M., Lombardi, F., Guzzetti, S., Sandrone, G., Rimoldi, D., Malfatto, G., Cerutti, S. andMalliani, A. (1984) Power spectral density of heart rate variability as an index of sympatho-vagal interaction in normal and hypertensive subjects.J. Hypertens,2, Suppl., S383-S385.Google Scholar
  15. Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., Sandrone, G., Malfatto, G., Dell'Orto, S., Piccaluga, E., Turiel, M., Baselli, G., Cerutti, S. andMalliani, A. (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog.Circ. Res.,59, 178–193.Google Scholar
  16. Parati, G., Pomidossi, G., Casadei, R., Groppelli, A., Trazzi, S., Di Rienzo, M. andMancia, G. (1987) Role of heart rate variability in the production of blood pressure variability in man.J. Hypertens.,5, 557–560.Google Scholar
  17. Parer, W. J., Parer, J. T., Holbrook, R. H. andBlock, B. S. (1985) Validity of mathematical methods of quantitating foetal heart rate variability.Am. J. Obstetr. Gynecol.,153, 402–409.Google Scholar
  18. Saul, J. P., Arai, Y., Berger, R. D., Lilly, L. S., Colucci, W. S. andCohen, R. J. (1988) Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis.Am. J. Cardiol.,61, 1292–1299.CrossRefGoogle Scholar
  19. Schwarz, G., Pfurtscheller, G., Litscher, G. andList, W. F. (1987) Quantification of autonomic activity in the brainstem in normal, comatose and brain dead subjects using heart rate variability.Funct. Neurol.,2, 149–154.Google Scholar
  20. Simpson, D. M. andWicks, R. (1988) Spectral analysis of heart rate indicates reduced baroreceptor-related heart rate variability in elderly persons.J. Gerontol.,43, M21-M24.Google Scholar
  21. Stefikova, M., Sovcikova, E. andBronis, M. (1986) The circardian rhythm of selected parameters of heart rate variability.Physiol. Bohemoslov,35, 227–232.Google Scholar
  22. Zbilut, J. P. andLawson, L. (1988) Decreased heart rate variability in significant cardiac events.Crit. Care. Med.,16, 64–66.Google Scholar

Copyright information

© IFMBE 1989

Authors and Affiliations

  • M. Malik
    • 1
  • T. Cripps
    • 1
  • T. Farrell
    • 1
  • A. J. Camm
    • 1
  1. 1.Department of Cardiological SciencesSt George's Hospital Medical SchoolLondonUK

Personalised recommendations