Advertisement

Medical and Biological Engineering and Computing

, Volume 27, Issue 5, pp 449–455 | Cite as

Automatic detection of sounds and murmurs in patients with lonescu-Shiley aortic bioprostheses

  • H. L. Baranek
  • H. C. Lee
  • G. Cloutier
  • L. -G. Durand
Computing and Data Processing

Abstract

The problems encountered in the automatic detection of cardiac sounds and murmurs are numerous. The phonocardiogram (PCG) is a complex signal produced by deterministic events such as the opening and closing of the heart valves, and by random phenomena such as blood-flow turbulence. In addition, background noise and the dependence of the PCG on the recording sites render automatic detection a difficult task. In the paper we present an iterative automatic detection algorithm based on the a priori knowledge of spectral and temporal characteristics of the first and second heart sounds, the valve opening clicks, and the systolic and diastolic murmurs. The algorithm uses estimates of the PCG envelope and noise level to identify iteratively the position and duration of the significant acoustic events contained in the PCG. The results indicate that it is particularly effective in detecting the second heart sound and the aortic component of the second heart sound in patients with lonescu-Shiley aortic valve bioprostheses. It has also some potential for the detection of the first heart sound, the systolic murmur and the diastolic murmur.

Keywords

Bioprosthetic heart valves Heart sound detection Parameter extraction Phonocardiography Spectral analysis 

List of symbols

AOC

aortic opening click

A2

aortic component of the second heart sound

BW30

bandwidth at −30 dB

C

threshold parameter

CP

control population

DA2

duration of A2

DM

diastolic murmur

ECG

electrocardiogram

Fc

crossover frequency: frequency of minimum absolute difference found between two spectra

F1

dominant frequency peak

F2

second dominant frequency peak

K

Kappa statistic

Pc

chance agreement

PCG

phonocardiogram

Pij

probability for rejecting the hypothesis that the mean values in the parameters estimated byi and byj are equal

P0

observed agreement

P2

pulmonary component of the second heart sound

QRS

complex wave of the ECG

SM

systolic murmur

S1

first heart sound

S2

second heart sound

Ti

threshold level of theith iteration

TP

test population

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, P. L. andDittmer, D. S. (1971) Heart and pumping action. InRespiration and circulation. Federation of American Societies for Experimental Biology, Bethesda, Maryland, USA, Chap. VI, 304–310.Google Scholar
  2. Beyar, R., Levkovitz, S., Braun, S. andPalti, Y. (1984) Heartsound processing by average and variance calculation—Physiologic basic and clinical implications.IEEE Trans.,BME-31, 591–596.Google Scholar
  3. Brais, M., Durand, L.-G., Blanchard, M., de Guise, J., Guardo, R. andKeon, W. J. (1986) Frequency analysis of Ionescu-Shiley prosthetic closing sounds in patients with normally functioning prostheses.Med. & Biol. Eng. & Comput.,24, 637–642.Google Scholar
  4. Cloutier, G., Grenier, M.-C., Guardo, R. andDurand, L.-G. (1987a) Spectral analysis of closing sounds produced by Ionescu-Shiley bioprosthetic aortic heart valves. Part 2 Computer simulation of aortic closing sounds and estimation of their truncation level and signal-to-noise ratio. —Ibid.,,25, 492–496.Google Scholar
  5. Cloutier, G., Guardo, R. andDurand, L.-G. (1987b) Spectral analysis of closing sounds produced by Ionescu-Shiley bioprosthetic aortic heart valves. Part 3 Performance of FFT-based and parametric methods for extracting diagnostic spectral parameters. —Ibid.,,25, 497–503.Google Scholar
  6. Cohen, J. (1960) Coefficient of agreement for nominal scales.Educ. & Psychol. Meas.,20, (1), 37–46.Google Scholar
  7. Cohen, J. (1968) Weighted Kappa: nominal scale agreement with provision for scaled disagreement or partial credit.Psychol. Bull.,70, 213–220.CrossRefGoogle Scholar
  8. Durand, L.-G., de Guise, J., Cloutier, G., Guardo, R. andBrais, M. (1986) Evaluation of FFT-based and modern parametric methods for the spectral analysis of bioprosthetic valve sounds.IEEE Trans.,BME-33, 572–578.Google Scholar
  9. Durand, L.-G., Blanchard, M., Sabbah, H. N., Hamid, M. S., Kemp, S. R. andStein, P. D. (1988) A Bayes model for automatic detection and quantification of bioprosthetic valve degeneration.Math. Comput. Modelling,11, 158–163.CrossRefGoogle Scholar
  10. Fleiss, J. L. (1971) Measuring numerical scale agreement among many raters.Psychol. Bull.,76, 378–382.CrossRefGoogle Scholar
  11. Foale, R. A., Joo, T. H., McLellan, J. H., Metzinger, R. W., Grant, G. L., Myers, G. S. andLees, R. S. (1983) Detection of aortic porcine valve dysfunction by maximum entropy spectral analysis.Circ.,68, 42–49.Google Scholar
  12. Johnson, G. R., Adolph, R. J. andCampbell, D. J. (1983) Estimation of the severity of aortic valve stenosis by frequency analysis of the murmurs.J. Am. Coll. Cardiol.,1, 1315–1323.CrossRefGoogle Scholar
  13. Joo, T. H., McLellan, J. H., Foale, R. A., Myers, G. S. andLees, R. S. (1983) Pole-zero modeling and clasification of phonocardiograms.IEEE Trans.,BME-30, 110–118.Google Scholar
  14. Koran, L. M. (1975) The reliability of clinical methods, data and judgments.Psychol. Bull.,76, 378–382.Google Scholar
  15. Langlois, Y. E., Greene, F. M. Jr., Roederer, G. O., Jager, K. A., Phillips, D. J., Beach, K. W. andStrandness, D. E. Jr. (1984) Computer based pattern recognition of carotid artery Doppler signals for disease classification: prospective validation.Ultrasound in Med. & Biol.,10, 581–595.CrossRefGoogle Scholar
  16. Light, R. J. (1971) Measures of response agreement for qualitative data: some generalizations and alternatives.Psychol. Bull.,76, 365–377.CrossRefGoogle Scholar
  17. Maisel, L. (1971)Probability, statistics and random processes. Simon & Schuster, New York, USA.zbMATHGoogle Scholar
  18. Oppenheim, A. V. andSchafer, R. W. (1975) Discrete Hilbert transforms. InDigital signal processing. Prentice-Hall, Englewood Cliffs, New Jersey, USA, Chap. 7, 337–375.Google Scholar
  19. Shaver, J. A., Salerni, R. A. andReddy, P. (1985) Normal and abnormal heart sounds in cardiac diagnosis. Part I: Systolic sounds.Curr. Problems in Cardiol.,10, 1–69.CrossRefGoogle Scholar
  20. Stein, P. D., Sabbah, H. N., Lakier, J. B. andGoldstein, S. (1980) Frequency spectrum of the aortic component of the second heart sound in patients with normal valves, aortic stenosis and aortic porcine xenograph.Am. J. Cardiol.,46, 48–52.CrossRefGoogle Scholar
  21. Stein, P. D., Sabbah, H. N., Lakier, J. B., Magilligan, D. J. andGoldstein, S. (1981) Frequency of the first heart sound in the assessment of stiffening of mitral bioprosthetic valves.Circ.,63, 200–203.Google Scholar
  22. Stein, P. D., Sabbah, H. N., Lakier, J. B., Kemp, S. R. andMagilligan, D. J. (1984) Frequency spectra of the first heart sound and of the aortic component of the second heart sound in patients with degenerated porcine bioprosthetic valves.Am. J. Cardiol.,53, 557–561.CrossRefGoogle Scholar

Copyright information

© IFMBE 1989

Authors and Affiliations

  • H. L. Baranek
    • 1
    • 2
  • H. C. Lee
    • 2
  • G. Cloutier
    • 1
    • 3
  • L. -G. Durand
    • 1
    • 3
  1. 1.Clinical Research Institute of MontrealUniversity of MontrealMontrealCanada
  2. 2.Department of Electrical EngineeringMcGill UniversityMontrealCanada
  3. 3.Biomedical Engineering Institute, École PolytechniqueUniversity de MontrealMontrealCanada

Personalised recommendations