Journal of Mathematical Sciences

, Volume 92, Issue 1, pp 3543–3549 | Cite as

Isometric embeddings of coinvariant subspaces of the shift operator

  • A. B. Aleksandrov


Let θ be an inner function. The main aim of this paper is to describe all positive measures on the unit circle\(\mathbb{T}\) such that\(\int\limits_\mathbb{T} {\left| f \right|^2 } d\mu = \left\| f \right\|_{H^2 }^2 \) for all continuous functions f∈H2⊖θH2. Bibliography: 8 titles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. B. Aleksandrov, “On the existence of angular boundary values of pseudocontinuable functions,”Zap. Nauchn. Semin. POMI,222, 5–17 (1995).MATHGoogle Scholar
  2. 2.
    D. Clark, “One dimensional perturbations of restricted shifts,”J. Anal. Math.,25, 169–191 (1972).MATHCrossRefGoogle Scholar
  3. 3.
    A. B. Aleksandrov, “Multiplicity of boundary values of inner functions,”Izv. Akad. Nauk Arm. SSR,22, 490–503 (1987).MATHGoogle Scholar
  4. 4.
    A. B. Aleksandrov, “Invariant subspaces of shift operators. Axiomatic approach,”Zap. Nauchn. Semin. LOMI,113, 7–26 (1981).MATHGoogle Scholar
  5. 5.
    A. G. Poltoratskii, “Boundary behavior of pseudocontinuable functions,”Algebra Analiz,5, 189–210 (1993).MATHMathSciNetGoogle Scholar
  6. 6.
    A. B. Aleksandrov, “Essays on nonlocally convex Hardy classes,”Lect. Notes Math.,864, 1–89 (1981).MATHCrossRefGoogle Scholar
  7. 7.
    K. M. Dyakonov, “Moduli and arguments of analytic functions from subspaces ofH p invariant under the backward shift operator,”Sib. Mat. Zh.,31, 64–79 (1990).MATHMathSciNetGoogle Scholar
  8. 8.
    N. K. Nikolskii,Treatise on the Shift Operator, Springer-Verlag (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • A. B. Aleksandrov

There are no affiliations available

Personalised recommendations