Advertisement

Geologische Rundschau

, Volume 85, Issue 4, pp 782–799 | Cite as

Genesis and distribution of mineral waters as a consequence of recent lithospheric dynamics: the Rhenish Massif, Central Europe

  • Franz May
  • Stephan Hoernes
  • Horst J. Neugebauer
Original Paper

Abstract

Three major, interdependent processes control the genesis and distribution of mineral and thermal waters in the Rhenish Massif, Central Europe: (a) Magmatic processes in the upper mantle provide most of the CO2 to produce bicarbonate waters in shallow aquifers. (b) Extension of the brittle upper crust enables the ascent of sodium chloride waters. (c) Uplift and erosion shape the massif's relief, which determines the extent of flow systems and the distribution of thermal springs. The chemistry of mineral waters further depends on the aquifers' mineral composition. A comprehensive set of hydrological, chemical, tectonic and geophysical data on the Rhenish Massif has been compiled. It was used to classify the mineral waters and to map the spatial distribution of water properties. The composition of cuttings from several representative wells producing different water types shows that the hydrothermal alteration of the aquifer rocks consists mainly of kaolinization of chlorite and dissolution of feldspar. Numerical transport simulations favour two modes of groundwater flow: topography-driven flow and the pressure-driven ascent of basement brines along active faults. Thermal convection is less important.

Key words

Mineral water Tectonics Hydrodynamics Hydrothermal alteration Flow systems Rhenish Massif 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahorner L (1983) Historical seismicity and present day microearthquake activity of the Rhenish Massif, Central Europe. In: Fuchs K et al. (eds) Plateau uplift. Springer, Berlin Heidelberg New York, pp 198–221CrossRefGoogle Scholar
  2. Althaus E, Walther J, Holl A (1995) Das Kontinentale Tiefbohrprogramm und die Fluidforschung. Geowissenschaften 13:147–153Google Scholar
  3. Becker A (1993) An attempt to define a “Neotectonic Period” for Central and Northern Europe. Geol Rundsch 82:67–83CrossRefGoogle Scholar
  4. Behr H, Gerler J (1987) Inclusions of sedimentary brines in post-Variscan mineralizations in the Federal Republic of Germany — a study by neutron activation analysis. Chem Geol 61:65–77CrossRefGoogle Scholar
  5. Behr H, Gerler J, Hein UF, Reutel CJ (1993) Tectonic Brines und Basement Brines in den mitteleuropäischen Varisziden: Herkunft, metallogenetische Bedeutung und geologische Aktivität. Göttinger Arb Geol Paläont 58:3–28Google Scholar
  6. Blundell DJ (1990) Seismic images of the continental lithosphere. J Geol Soc 147:895–913CrossRefGoogle Scholar
  7. Boom G von der, Krimmel H (1986): Geochemiche Untersuchungen im Gebiet Lohrheim/Lahn unter Verwendung gasförmiger Elemente und Verbindungen. Geol Jb D81:3–19Google Scholar
  8. Bruhn RL (1992) Fracture networks in fault zones — controls on fluid transport, chemical alteration and fault mechanics. Abstr 29th Int Geol Congr, p. 166Google Scholar
  9. Byerlee J (1993) Model for episodic flow of high-pressure water in fault zones before earthquakes. Geology 21:303–306CrossRefGoogle Scholar
  10. Carlé W (1975) Die Mineral- und Thermalwässer von Mitteleuropa. Wissenschaftl Verlagsges, Stuttgart, pp 1–643Google Scholar
  11. Cathles LM (1990) Scales and effects of fluid flow in the upper crust. Science 248:323–329CrossRefGoogle Scholar
  12. Clauser C (1988) Untersuchungen zur Trennung der konduktiven und konvektiven Anteile im Wärmetransport in einem Sedimentbecken am Beispiel des Oberrheintalgrabens. Forsch Ber VDI Reihe 19 Nr 28:1–134Google Scholar
  13. Cloos H (1939) Hebung, Spaltung, Vulkanismus. Elemente einer geometrischen Analyse irdischer Grossformen. Geol Rundsch 30:401–519Google Scholar
  14. DEKORP Research Group (1990) Results of deep seismic reflection investigations in the Rhenish Massif. Tectonophysics 173:507–515CrossRefGoogle Scholar
  15. Erft Verband (1992) Jahresbericht 1992. Berghein, pp 1–108Google Scholar
  16. Felix-Henningsen P (1990) Die mesozoisch-tertiäre Verwitterungsdecke (MTV) im Rheinischen Schiefergebirge. Aufbau, Genese und quartäre Oberprägung. Relief Boden Paläoklima 6:1–192Google Scholar
  17. Flehmig W (1983) Mineralogical composition of pelitic sediments in the Rhenohercynian zone. In: Martin H, Eder FW (eds) Intracontinental foldbelts. Springer, Berlin Heidelberg New York, pp 257–265CrossRefGoogle Scholar
  18. Fontes JC, Matray JM (1993) Geochemistry of formation brines from the Paris Basin, France. Chem Geol 109:149–200CrossRefGoogle Scholar
  19. Fournier RO, Potter RW II (1979) Magnesium correction to the Na-K-Ca chemical geothexmometer. Geochim Cosmochim Acta 43:1543–1550CrossRefGoogle Scholar
  20. Franke W, Bortfeld RK, Brix M, Drozdzewski G, Dürrbaum HJ, Giese P, Janoth P, Jödicke H, Reichert C, Scherp A, Schmoll J, Thomas R, Thünker M, Weber K, Wiesner MG, Wong HK (1990) Crustal structure of the Rhenish Massif: results of deep seismic reflection lines DEKORP 2-North and DEKORP 2-North-Q. Geol Rundsch 79:523–566CrossRefGoogle Scholar
  21. Fricke K (1974) Die Thermalwasserbohrung 1973 in St. Augustin/ Raum Bonn. Brunnenbau, Bau von Wasserwerken, Rohrleitungsbau 25:155–158Google Scholar
  22. Fricke K (1977) Zur Hydrogeologie, Hydrochemie und Geothermik der neuen Thermalbohrung in Bad Neuenahr 1975/76 unter besonderer Berücksichtigung des angetroffenen Basaltganges. Heilbad Kurort 77:8–19Google Scholar
  23. Fricke K, Deutloff O (1964) Die geologischen und hydrologischen Ergebnisse der Mineralwasserneubohrung “Gartenstrasse” in Bad Godesberg 1961/62. Gas Wasserfach 105:305–311Google Scholar
  24. Fuchs K, Gehlen K von, Mälzer H, Murawski H, Semmel A (eds) (1983) Plateau uplift. The Rhenish Shield: a case history. Springer, Berlin Heidelberg New York, pp 1–411Google Scholar
  25. Giggenbach WF (1988) Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765CrossRefGoogle Scholar
  26. Giggenbach WF, Gonfiantini R, Jangi BL, Truesdell AH (1983) Isotopic and chemical composition Parbati Valley geothermal discharges, NW Himalaya, India. Geothermics 12:199–222CrossRefGoogle Scholar
  27. Giggenbach WF, Sano Y, Schmincke HU (1991) CO2-rich gases from lakes Nyos, Cameroon; Laacher See, Germany; Dieng, Indonesia; and Mt. Gambier, Australia — variation on a common theme. J Vocanol Geotherm Res 45:311–323CrossRefGoogle Scholar
  28. Grabert H (1994) Tektogenese und Mineralisation im Rheinischen Schiefergebirge. Decheniana 147:179–192Google Scholar
  29. Griesshaber E, O'Nions RK, Oxburgh ER (1992) Helium and carbon isotope systematics in crustal fluids from the Eifel, the Rhine Graben and Black Forest, FRG. Chem Geol 99:213–235CrossRefGoogle Scholar
  30. Grünthal G, Stromeyer D (1992) The recent crustal stress field in Central Europe: trajectories and finite element modelling. J Geophys Res 97 (B8): 11805–11820CrossRefGoogle Scholar
  31. Hanel R (1983) Geothermal investigations in the Rhenish Massif. In: Fuchs K et al. (eds) Plateau uplift. Springer, Berlin Heidelberg New York, pp 228–246CrossRefGoogle Scholar
  32. Heyl KE, Nielsen H, Rambow D (1970) Die S-Isotopenverteilung im Sulfatschwefel von Mineralwässern aus dem Moselgebiet, dem Mainzer Becken, dem westlichen Oberrheingraben und dem Nahegebiet. Notizbl Hess Landesamt Bodenforsch 98:249–254Google Scholar
  33. Holl HG (1995) Die Siliziklastika des Unterdevon im Rheinischen Trog (Rheinisches Schiefergebirge). Detritus-Eintrag und P,T-Geschichte. Dissertation, University of Bonn, pp 1–164Google Scholar
  34. Hölting B (1977) Bemerkungen zur Herkunft der Salinarwässer am Taunusrand. Geol Jb Hessen 105:211–221Google Scholar
  35. Hummel K (1930) Beziehungen der Mineralquellen Deutschlands zum jungen Vulkanismus. Z pr Geol 38:1–8, 20–24Google Scholar
  36. Hutcheon I (1984) A review of artificial diagenesis during thermally enhanced recovery. AAPG Mem 37:413–429Google Scholar
  37. Kharaka YK, Mariner RH (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naeser ND, McCulloh TH (eds) Thermal history of sedimentary basins. Springer, Berlin Heidelberg New York, pp 99–117CrossRefGoogle Scholar
  38. Knetsch G (1939) Kohlensäure, Vulkanismus und Erzlagerstätten des Rheinischen Schiefergebirges (eine Karte tektonisch-magmatischer Konsequenzen). Geol Rundsch 30:777–789CrossRefGoogle Scholar
  39. Krahn L (1988) Buntmetall-Vererzung und Blei-Isotopie im Linksrheinischen Schiefergebirge und in angrenzenden Gebieten. Dissertation, TH Aachen, 199 ppGoogle Scholar
  40. Langguth HR, Plum H (1983) Research of geothermal anomalies by means of hydrochemical data in the East Eifel area, West Germany. Geothermics 12:233–239CrossRefGoogle Scholar
  41. Laube N, Hergarten S, Neugebauer HJ (1996) MODUSCALC —a computer program to calculate a mode from a geochemical rock analysis. Comp Geosci (in press)Google Scholar
  42. Matthews A, Fouillac C, Hill R, O'Nions RK, Oxburgh ER (1987) Mantle-derived volatiles in the continental crust: the Massif Central of France. Earth Planet Sci Lett 85:117–128CrossRefGoogle Scholar
  43. May F (1993) Origin of mineral waters in the Rhenish Massif; analytical and numerical results. In: Banks S, Banks D (eds) Hydrogeology of hard rocks. Geol Surv Norway, Trondheim, pp 498–506Google Scholar
  44. May F (1994a) Zur Entstehung der Mineralwässer des Rheinischen Massifs. Dissertation, University of Bonn, pp 1–136Google Scholar
  45. May F (1994b) Weathering or hydrothermal alteration? Examples from the Rhenish Massif, Germany. Mineral Mag 58A:577–578CrossRefGoogle Scholar
  46. McKenzie D (1994) Melt movement in the mantle. Mineral Mag 58A:585–586CrossRefGoogle Scholar
  47. Meissner R, Wever T, Sadowiak P (1990) Reflectivity patterns in the Variscan mountain belt and adjacent areas: an attempt for a pattern recognition and correlation to tectonic units. Tectonophysics 173:361–378CrossRefGoogle Scholar
  48. Mengel K, Sachs PM, Stosch HG, Wörner G, Loock G (1991) Crustal xenoliths from the Cenozoic volcanic fields of West Germany: implications for structure and composition of the continental crust. Tectonophysics 195:271–289CrossRefGoogle Scholar
  49. Parkhurst DL, Thorstenson DC, Plummer LN (1983) PHREEQE A computer program for geochemical calculations. USGS Water Resources Inv 80–96, pp 1–210Google Scholar
  50. Plenefisch T, Bonjer KP (1994) The stress tensor in the Rhine Graben area derived from earthquake focal mechanisms (extended abstract). Geol Mijnbouw 73:169–172Google Scholar
  51. Ploschenz C (1994) Quartäre Vertikaltektonik im südöstlichen Schiefergebirge, begründet mit der Lage der jüngeren Hauptterrasse. Dissertation, University of Bonn, pp 1–185Google Scholar
  52. Potdevin JL, Marquer D (1987) Méthodes de quantificacion des transferts de matière par les fluides dans les roches métamorphiques déformées. Geochim Acta 1987:193–206Google Scholar
  53. Plum H (1989) Genetische Klassifikation und geochemische Interpretation der Mineral- und Thermalwässer der Eifel und Ardennen. Mitt Ing Hydrogeol 34:1–170Google Scholar
  54. Raikes S, Bonjer KP (1983) Large-scale mantle heterogeneity beneath the Rhenish Massif and its vicinity from teleseismic Presiduals measurements. In: Fuchs K et al. (eds) Plateau uplift. Springer, Berlin Heidelberg New York, pp 315–331CrossRefGoogle Scholar
  55. Redecke P (1992) Zur Geochemie und Genese variszischer und postvariszischer Buntmetallmineralisation in der Nordeifel und der Niederrheinischen Bucht. Dissertation, TH Aachen, pp 1–152Google Scholar
  56. Riley TR, Bailey DK, Lloyd FE, Fenwick CS, Palmer MR (1994) Carbonate metasomatism in the Eifel (Germany) sub-continental lithosphere: geochemical and isotopic signature. Mineral Mag 58A: 776–777CrossRefGoogle Scholar
  57. Schiano P, Clocchiatti R, Shimizu N (1994) Melt inclusions trapped in mantle minerals: a clue to identifying metasomatic agent in the upper mantle beneath continental and oceanic intraplate regions. Mineral Mag 58A: 807–808CrossRefGoogle Scholar
  58. Schmincke HU, Van den Boogard P, Freundt A (1990) Quaternary Eifel volcanism. Excursion Int Volcanological Congr Mainz, pp 1–188Google Scholar
  59. Schwanbeck K (1992) C- und O-Isotopenuntersuchungen an Siderit-Konkretionen aus Oberems-Schichten der Moselmulde. Dissertation, University of Bonn, pp 1–92Google Scholar
  60. Spelter M (1978) Zur Hydrogeologie, Hydrochemie und Hydrothermie der südlichen Niederrheinischen Bucht, insbesondere des Südteils der Erftscholle. Mitt Ing Hydrogeol 7:1–161Google Scholar
  61. Spera FJ (1984) Carbon dioxide in petrogenesis III: role of volatiles in the ascent of alkaline magma with special reference to xenolith-bearing mafic lavas. Contrib Mineral Petrol 88:217–232CrossRefGoogle Scholar
  62. Spera FJ (1987) Dynamics of translithospheric migration of metasomatic fluid and alkaline Magma. In: Mezies MA, Hakesworth CJ (eds) Mantle metasomatism. Academic Press, London, pp 1–20Google Scholar
  63. Spies ED (1986) Vergleichende Untersuchungen an präpleisto-zänen Verwitterungsdecken im Osthunsrück und an Gesteinszersatz durch aszendente (Thermal-) Wässer in der Nordosteifel (Rheinisches Schiefergebirge). Dissertation, University of Bonn, pp 1–182Google Scholar
  64. Stengel-Rutkowski W (1987) Die Säuerlinge des Westtaunus Nachzügler eines neogenen Vulkanismus oder Vorboten künftiger tektonischer Aktivität? Geol Jb Hessen 115:331–340Google Scholar
  65. Thilbault Y, Holloway JR (1994) Solubility of CO2 in a Ca-rich leucitite: effects of pressure, temperature and oxygen fugacity. Contrib Mineral Petrol 116:216–224CrossRefGoogle Scholar
  66. Torgerson T, Clarke WB (1992) Geochemical constraints on formation fluid ages, hydrothermal heat flux and Custal mass transport mechanisms at Cajon Pass. J Geophys Res 97 (B4):5031–5038CrossRefGoogle Scholar
  67. Trappe H, Wever T (1990) Seismic evidence of increased tectonothermal activity near the Oberpfalz deep continental drilling location (SE Germany). Geol Rundsch 79:649–658CrossRefGoogle Scholar
  68. Volbers R, Jödicke H, Untiedt J (1990) Magnetotelluric study of the Earth's crust along the deep seismic reflection profile DEKORP 2-N. Geol Rundsch 79:581–601CrossRefGoogle Scholar
  69. Wedewardt M (1995) Hydrochemie und Genese der Tiefenwässer im Ruhr-Revier. DMT-Berichte Forschung Entwicklung 39:1–250Google Scholar
  70. Weyer KU (1972) Ermittlung der Grundwassermengen in den Festgesteinen der Mittelgebirge aus den Messungen des Trockenwetterabflusses. Geol Jb C3:19–114Google Scholar
  71. White BS, Wyllie PJ (1992) Solidus reactions in synthetic lherzolite-H2O-CO2 from 20–30 kbar, with applications to melting and metasomatism. J Volcanol Geotherm Res 50:117–130CrossRefGoogle Scholar
  72. Wilson M, Downes H (1992) Mafic alkaline magmatism associated with the European Cenozoic rift system. Tectonophysics 208:173–182CrossRefGoogle Scholar
  73. Witkowski A, Kowalczyk A (1993) Changes of hydrogeological properties of the carboniferous sandstones with depth in the upper silesian coal basin (Poland). in pressGoogle Scholar
  74. Witt-Eickschen G, Seck HA, Reys C (1992) Multiple enrichment processes and their relationships in the subcrustal Lithosphere beneath the Eifel (Germany) J Petrol 34:1–22CrossRefGoogle Scholar
  75. Ziegler PA (1994) Cenozoic rift system of western and cental Europe: an overview. Geol Mijnbouw 73:99–127Google Scholar
  76. Zinngrebe E, Foley S (1995) Metasomatism in mantle xenoliths from Gees, West Eifel, Germany: evidence for the genesis of calc-alkaline glasses and metasomatic Ca-enrichment. Contrib Mineral Petrol 122:79–96CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Franz May
    • 1
  • Stephan Hoernes
    • 1
  • Horst J. Neugebauer
    • 1
  1. 1.Sonderforschungsbereich 350Universität BonnBonnGermany

Personalised recommendations