European Journal of Nuclear Medicine

, Volume 24, Issue 2, pp 150–159 | Cite as

In vivo detection of multidrug-resistant (MDR1) phenotype by technetium-99m sestamibi scan in untreated breast cancer patients

  • Silvana Del Vecchio
  • Andrea Ciarmiello
  • Maria I. Potena
  • Maria V. Carriero
  • Ciro Mainolfi
  • Gerardo Botti
  • Renato Thomas
  • Maria Cerra
  • Giuseppe D'Aiuto
  • Takashi Tsuruo
  • Marco Salvatore
Original Article


Technetium-99m sestamibi is a transport substrate recognised by the multidrug-resistant P-glycoprotein (Pgp). To test whether99mTc-sestamibi efflux is enhanced in breast carcinomas overexpressing Pgp, we determined the efflux rates of99mTc-sestamibi and Pgp levels in tumours from 30 patients with untreated breast carcinoma. Patients were intravenously injected with 740 MBq of99mTc-sestamibi and underwent a 15-min dynamic study followed by the acquisition of static planar images at 0.5, 1, 2 and 4 h. Tumour specimens were obtained from each patient 24 h after99mTc-sestamibi scan and Pgp levels were determined using125I-MRK16 monoclonal antibody and in vitro quantitative autoradiography. All breast carcinomas showed high uptake of99mTc-sestamibi and data from region of interest analysis on sequential images were fitted with a monoexponential function. The efflux rates of99mTc-sestamibi, calculated from decay-corrected time-activity curves, ranged between 0.00121 and 0.01690 min−1 and were directly correlated with Pgp levels measured in the same tumours (r=0.62;P<0.001). Ten out of 30 breast carcinomas (33%) contained 5 times more Pgp than benign breast lesions and showed a mean concentration of 5.73±1.63 pmol/g of tumour (group A). The remaining 20 breast carcinomas had a mean Pgp concentration of 1.29±0.64 pmol/g (group B), equivalent to that found in benign breast lesions.99mTc-sestamibi efflux from tumours of group A was 2.7 times higher than that observed in tumours of group B (0.00686±0.00390 min−1 vs 0.00250±0.00090 min−1,P<0.001). The in vivo functional test with99mTc-sestamibi showed a sensitivity and a specificity of 80% and 95%, respectively. In conclusion, the efflux rate of99mTc-sestamibi may be used for the in vivo identification of the multidrug resistant (MDR1) phenotype in untreated breast cancer patients.

Key words

Multidrug resistance P-glycoprotein Technetium-99m sestamibi Breast carcinoma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kartner N, Evernden-Porelle D, Bradley G, Ling V. Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal antibody.Nature 1985; 316: 820–823.PubMedCrossRefGoogle Scholar
  2. 2.
    Gottesman MM, Pastan I. The multidrug transporter, a doubleedged sword,J Biol Chem 1988; 263: 12163–12166.PubMedGoogle Scholar
  3. 3.
    Van der Bliek AM, Borst P. Multidrug resistance.Adv Cancer Res 1989; 52: 165–202.PubMedCrossRefGoogle Scholar
  4. 4.
    Shen DW, Fojo A, Chin JE, Roninson IB, Richert N, Pastan I, Gottesman MM. Human multidrug-resistant cell lines: increasedmdr 1 expression can precede gene amplification.Science 1986; 232: 643–645.PubMedGoogle Scholar
  5. 5.
    Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues.Proc Natl Acad Sci USA 1987; 84: 265–269.PubMedCrossRefGoogle Scholar
  6. 6.
    Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues.Proc Natl Acad Sci USA 1987; 84: 7735–7738.PubMedCrossRefGoogle Scholar
  7. 7.
    Goldstein LJ, Galski H, Fojo A, Willingham M, Lai S-L, Gazdar A, Pirker R, Green A, Crist W, Brodeur GM, Lieber M, Cossman J, Gottesman MM, Pastan I. Expression of a multidrug resistance gene in human cancers.J Natl Cancer Inst 1989; 81: 116–124.PubMedGoogle Scholar
  8. 8.
    Weinstein RS, Hansen KK, McBeath RB, Dalton WS. Expression of the MDR1 gene (P-glycoprotein) in breast cancer.Recent Results cancer Res 1993; 127: 49–54.PubMedGoogle Scholar
  9. 9.
    Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants.Biochim Biophys Acta 1976, 455: 152–162.PubMedCrossRefGoogle Scholar
  10. 10.
    Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB. Internal duplication and homology with bacterial transport proteins in themdr 1 (P-glycoprotein) gene from multidrug-resistant human cells.Cell 1986; 47: 381–389.PubMedCrossRefGoogle Scholar
  11. 11.
    Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA, Croop JM. Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex.Cancer Res 1993; 53: 977–984.PubMedGoogle Scholar
  12. 12.
    Wackers FJT, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, Boucher CA, Picard M, Holman BL, Fridrich R, Inglese E, Delaloye B, Bischof-Delaloye A, Camin L, McKusick K. Tc-99m-hexakis 2-methoxy isobutylisonitrile: human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging.J Nucl Med 1989; 30: 301–311.PubMedGoogle Scholar
  13. 13.
    Hassan IM, Sahweil A, Constantinides C, Mahmoud A, Nair M, Omar YT, Abdel-Dayem HM. Uptake and kinetics of Tc-99m hesakis 2-methoxy isobutylisonitrile in benign and malignant lesions of the lungs.Clin Nucl Med 1989; 14: 333–340.PubMedGoogle Scholar
  14. 14.
    Caner B, Kitapel M, Unlu M, Erbengi G, Calikoglu T, Gogus T, Bekdik C. Tc-99m-MIBI uptake in benign and malignant bone lesions: a comparative study with Tc-99m-MDP.J Nucl Med 1992; 33: 319–324.PubMedGoogle Scholar
  15. 15.
    Khalkhali I, Mena I, Diggles L. Review of imaging techniques for the diagnosis of breast cancer: a new role of prone scintimammography using technetium-99m sestamibi.Eur J Nucl Med 1994; 21: 357–362.PubMedCrossRefGoogle Scholar
  16. 16.
    Khalkhali I, Cutrone J, Mena I, Diggles L, Venegas R, Vargas H, Jackson B, Klein S. Technetium-99m-sestamibi scintimammography of breast lesions: clinical and pathological followup.J Nucl Med 1995; 36: 1784–1789.PubMedGoogle Scholar
  17. 17.
    Delmon-Moingeon LI, Piwnica-Worms D, Van den Abbeele AD, Holman BL, Davison A, Jones AG. Uptake of the cation hexakis (2 methoxyisobutylisonitrile)-technetium-99m by human carcinoma cell lines in vitro.Cancer Res 1990; 50: 2198–2202.PubMedGoogle Scholar
  18. 18.
    Piwnica-Worms D, Kronauge JF, Chiu ML. Uptake and retention of hexakis (2-methoxy isobutyl isonitrile) technetium(I) in cultured chick myocardial cells: mitochondrial and plasma membrane potential dependence.Circulation 1990; 82: 1826–1838.PubMedGoogle Scholar
  19. 19.
    Chiu ML, Kronauge JF, Piwnica-Worms D. Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis(2-methoxyisobutylisonitrile) technetium in cultured mouse fibroblasts.J Nucl Med 1990; 31: 1646–1653.PubMedGoogle Scholar
  20. 20.
    Hartmann WH, Ozzello L, Sobun LH, Stalsberg H.Histological typing of breast tumors, 2nd edn. Geneva: WHO, 1981.Google Scholar
  21. 21.
    Black MM, Speer FD. Nuclear structure in cancer tissues.Surg Gynecol Obstet 1957; 105: 97–102.PubMedGoogle Scholar
  22. 22.
    EORTC Breast Cancer Cooperative Group. Standards for the assessment of hormone receptors in human breast cancer.Eur J Cancer 1980; 16: 1513–1515.Google Scholar
  23. 23.
    Bates S, Lee JS, Dickestein B, Spolyer M, Fojo AT. Differential modulation of P-glycoprotein transport by protein kinase inhibition.Biochemistry 1993; 32: 9156–9164.PubMedCrossRefGoogle Scholar
  24. 24.
    Li PY, Del Vecchio S, Fonti R, Carriero MV, Potena MI, Botti G, Miotti S, Lastoria S, Menard S, Colnaghi MI, Salvatore M. Local concentration of folate binding protein GP38 in sections of human ovarian carcinoma by in vitro quantitative autoradiography.J Nucl Med 1996; 37: 665–672.PubMedGoogle Scholar
  25. 25.
    Hamada H, Tsuruo T. Functional role for the 170- to 180-kDa glycoprotein specific to drug-resistant tumor cells as revealed by monoclonal antibodies.Proc Natl Acad Sci USA 1986; 83: 7785–7789.PubMedCrossRefGoogle Scholar
  26. 26.
    Georges E, Tsuruo T, Ling V. Topology of P-glycoprotein as determined by epitope mapping of MRK16 monoclonal antibody.J Biol Chem 1993; 268: 1792–1798.PubMedGoogle Scholar
  27. 27.
    Fraker PJ, Speck JC. Protein and cell membrane iodinations with a sparingly soluble chloramide 1,3,4,6-tetrachloro-3α,6α-diphenylglycouril.Biochem Biophys Res Commun 1978; 80: 849–857.PubMedCrossRefGoogle Scholar
  28. 28.
    Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess.J Immunol Methods 1984; 72: 77–89.PubMedCrossRefGoogle Scholar
  29. 29.
    Del Vecchio S, Reynolds JC, Blasberg RG, Neumann RD, Carrasquillo JA, Hellstrom I, Larson SM Measurement of localM r 97,000 and 250,000 protein antigen concentration in sections of human melanoma using in vitro quantitative autoradiography.Cancer Res 1988; 48: 5475–5481.PubMedGoogle Scholar
  30. 30.
    Hsu SM, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures.J Histochem Cytochem 1981; 29: 577–580.PubMedGoogle Scholar
  31. 31.
    Colton T.Statistics in medicine. Boston: Little, Brown and Co., 1974.Google Scholar
  32. 32.
    Ballinger JR, Hua HA, Berry BW, Firby P, Boxen I.99mTc-sestamibi as an agent for imaging P-glycoprotein-mediated multidrug resistance: in vitro and in vivo studies in a rat breast tumour cell line and its doxorubicin-resistant variant.Nucl Med Commun 1995; 16: 253–257.PubMedGoogle Scholar
  33. 33.
    Scala S, Saeki T, Lynch A, Salomon D, Merino MJ, Bates S. Coexpression of TGFα, epidermal growth factor receptor, and P-glycoprotein in normal and benign diseased breast tissues.Diagn Mol Pathol 1995; 4: 136–142.PubMedGoogle Scholar
  34. 34.
    Charpin C, Vielh P, Duffaud F, Devictor B, Andrac L, Lavaut MN, Allasia C, Horschowski, Piana L. Quantitative immunocytochemical assays of P-glycoprotein in breast carcinomas: correlation to messenger RNA expression and immunohistochemical prognostic indicators.J Natl Cancer Inst 1994; 86: 1539–1545.PubMedGoogle Scholar
  35. 35.
    Levchenko A, Metha BM, Spengler BA, Narkar AA, Fonti R, Biedler JL, Tsuruo T, Larson SM. Measurement of P-glycoprotein expression in multidrug-resistant human neuroblastoma cell lines using self-competitive binding assay.Anal Biochem 1996; 236: 338–343.PubMedCrossRefGoogle Scholar
  36. 36.
    Young AB, Frey KA, Agranoff BW. Receptor assay: in vitro and in vivo. In: Phelps M, Mazziotta J, Schelbert H, eds.Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York: Raven Press; 1986: 73–111.Google Scholar
  37. 37.
    Del Vecchio S, Stoppelli P, Carriero MV, Fonti R, Massa O, Li PY, Botti G, Cerra M, D'Aiuto G, Esposito G, Salvatore M. Human urokinase receptor concentration in malignant and benign breast tumors by in vitro quantitative autoradiography: comparison with urokinase levels.Cancer Res 1993; 53: 3198–3206.PubMedGoogle Scholar
  38. 38.
    Chan HSL, Haddad G, Thorner PS, DeBoer G, Lin YP, Ondrusek N, Yeger H, Ling V. P-glycoprotein expression as a predictor of the outcome of therapy for neuroblastoma.N Engl J Med 1991; 325: 1608–1614.PubMedCrossRefGoogle Scholar
  39. 39.
    Valverde MA, Diaz M, Sepulveda FV, Gill DR, Hyde SC, Higgins C. Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein.Nature 1992; 355: 830–833.PubMedCrossRefGoogle Scholar
  40. 40.
    Abraham EH, Prat AG, Gerweck L, Seneveratne T, Arceci RJ, Kramer R, Guidotti G, Cantiello HF. The multidrug resistance (mdr 1) gene product functions as an ATP channel.Proc Natl Acad Sci USA 1993; 90: 312–316.PubMedCrossRefGoogle Scholar
  41. 41.
    Chambers TC, McAvoy EM, Jacobs JW, Eilon G. Protein kinase C phosphorylates P-glycoprotein in multidrug resistant human KB carcinoma cells.J Biol Chem 1990: 265: 7679–7686.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Silvana Del Vecchio
    • 1
    • 4
  • Andrea Ciarmiello
    • 2
  • Maria I. Potena
    • 2
  • Maria V. Carriero
    • 2
  • Ciro Mainolfi
    • 1
    • 4
  • Gerardo Botti
    • 2
  • Renato Thomas
    • 2
  • Maria Cerra
    • 2
  • Giuseppe D'Aiuto
    • 2
  • Takashi Tsuruo
    • 3
  • Marco Salvatore
    • 1
    • 4
  1. 1.Medicina Nucleare, Istituto di Scienze Radiologiche II Facoltá di MedicinaUniversitá degli Studi “Federico II”NaplesItaly
  2. 2.Istituto Nazionale per lo Studio e la Cura dei tumoriNaplesItaly
  3. 3.Institute of Applied MicrobiologyUniversity of TokyoTokyoJapan
  4. 4.Centro per lo Studio della Medicina Nucleare CNRNaplesItaly

Personalised recommendations