Human Evolution

, 6:263 | Cite as

Paradise lost: Mitochondrial eve refuted

  • M. Pickford


Being based solely on neontological data, all «unique parent» evolutionary hypotheses, of which «Mitochondrial Eve» is one, fall into the category ofscala naturae. Mathematical treatment of neontological data bases, using cladistic approaches does not confer the status of scientific hypotheses onto such scenarios. Apart from these fundamental problems, such hypotheses are flawed on a number of other bases, including the fact that there is a proportion of parental contribution to mitochondrial lineages, despite widely publicised statements that mithocondrial DNA in mammals is «strictly» maternally inherited. Other weaknesses of «unique mother» hypotheses on that their proponents endeavour to describe the evolution of diploid organisms on the basis of variability in extant haploid organelles, the evolution of which is delinked from that of the diploid organism. A further difficulty is that it is not possible to reconstruct interspecific relationships on the basis of intraspecific variability. There is a general ignorance among proponents of «unique mother» hypotheses regarding the distribution of biological variability on the surface of the globe, a fact which renders the molecular clock inaccurate, and which upsets the simplistic proposal that molecular diversity equates with time. «Unique mother» scenarios are also invalidated by the presence of shared chromosome and other polymorphisms in african great apes and humans at similar percentages in the different lineages, a fact which indicates that these evolving populations did not experience «bottlenecks». These and other difficulties effectively refute the «Mitochondrial Eve» hypothesis, which in any case much resembles creationism of a special kind, in which the offspring of a breeding pair are visualised as belonging to a species different from its parents. Such extreme examples of the punctuational mode of evolution are highly likely to be incorrect.

Key words

«Unique mother hypotheses» Mitochondrial DNA Human evolution bottlenecks biological variability polymorphisms 


  1. Brown W.M. 1980.Polymorphism in mithocondrial DNA of humans as revealed by restriction endonuclease analysis. Proc. Natl Acad. Sci. USA, 77: 3605–3609.CrossRefGoogle Scholar
  2. Cann R., Stoneking M. &Wilson A.C. 1987.Mitochondrial DNA and human evolution. Nature, 325: 31–36.CrossRefGoogle Scholar
  3. Darlu P. &Tassy P. 1987a.Disputed African origin of human populations. Nature, 329: 111.CrossRefGoogle Scholar
  4. Darlu P. &Tassy P. 1987b.Roots. Human. Evol., 2: 407–412.Google Scholar
  5. Excoffier L. &Langanay A. 1989.Origin and differentiation of human Mitochondrial DNA. Am. Jl Hum. Genet., 44: 73–85.Google Scholar
  6. Excoffier L. &Roessli D. 1990.Origine et évolution de l'ADN mitochondrial humain: le paradigme perdu. Bull. et Mém. Soc. Anthrop. Paris n.s., 2: 25–42.CrossRefGoogle Scholar
  7. Ferris S.D., Wilson A.C. &Brown W.M. 1981.Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA. Proc. Natl. Acad. Sci. USA, 78: 2432–2436.CrossRefGoogle Scholar
  8. Gyllensten U., Josefsson A., Wharton D. &Wilson A. 1991. Nature. Vol. 352: pag. 355–357.CrossRefGoogle Scholar
  9. Hasegawa M. &Yano T. 1984.Phylogeny and classification of Hominoidea as inferred from DNA sequence data. Proc. Japan. Acad., 60 Ser B 10: 389–392.Google Scholar
  10. Howells W.W., 1989.Origine de la diversité actuelle. In: Ferembach D., Susanne C. & Chamla M.C., L'Homme, son évolution, sa diversité. CNRS Paris.Google Scholar
  11. Humboldt A., von, 1805.Essai sur la géographie des plantes.Google Scholar
  12. Ibraimov A.I. In press. The origin of modern humans: a cytogenetic model. Human Evol.Google Scholar
  13. Johnson M.J., Wallace D.C., Ferris S.D., Rattazzi M.C. &Cavalli-Sforza L.L. 1983.Radiation of human mitochondrial DNA types analysed by restriction endonuclease cleavage patterns. Jl Mol. Evol., 19: 255–271.CrossRefGoogle Scholar
  14. Lucotte G. 1989.Evidence for the paternal ancestry of modern humans: evidence from a Y-chromosome specific sequence polymorphic DNA probe. In: Mellars C. & Stringer C., (eds) The Human Revolution, New Jersey, Princeton University Press: 39–46.Google Scholar
  15. Pickford M. 1987.The diversity, zoogeography and geochronology of monkeys. Human Evol., 2: 71–89.Google Scholar
  16. Spuhler J. 1988.Evolution of mitochondrial DNA in monkeys, apes and humans Yrbk. Phys. Anthrop., 31: 15.48.Google Scholar
  17. Stehli F.G. 1968.Taxonomic diversity gradients in pole location: the recent model. In: Drake E.S. (ed). Evolution and environment: 163–219, New Haven and London, Yale University Press.Google Scholar
  18. Stoneking M. &Cann R. 1989.African origin of human mitochondrial DNA. In: Mellars C. & Stringer C. (eds.). The Human Revolution: 17–30, New Jersey, Princeton University Press.Google Scholar
  19. Stringer C. &Andrews P. 1988.Genetic and fossil evidence for the origin of modern humans. Science, 239: 1263–1268.Google Scholar
  20. Wallace A.R. 1876.The Geographical Distribution of Mammals. London, MacMillan.Google Scholar
  21. Wienberg J. &Stanyon R. 1987.Fluorescent heterochromatin staining in primate chromosomes. Human Evol., 2: 445–457.Google Scholar
  22. Wolpoff M. 1989.Multiregional Evolution: the fossil alternative to Eden. In: Mellars C. & Stringer C. (eds). The Human Revolution: 62–108. New Jersey, Princeton Univeirsity Press.Google Scholar

Copyright information

© Editrice Il Sedicesimo 1991

Authors and Affiliations

  • M. Pickford
    • 1
  1. 1.Institut de PaléontologieParisFrance

Personalised recommendations