Human Evolution

, Volume 13, Issue 3–4, pp 229–234 | Cite as

Human adaptations to meat eating

  • M. Henneberg
  • V. Sarafis
  • K. Mathers
Article

Abstract

It is argued that Homo sapiens is a habitual rather than a facultative meat eater. Quantitative similarity of human gut morphology to guts of carnivorous mammals, preferential absorption of haem rather than iron of plant origin, and the exclusive use of humans as the definitive host by Taenia saginata and the almost complete human specificity of T. solium are used to support the argument.

Keywords

australopithecinae Tacniods parasites hominids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello LC and Dean C (1990) An Introduction to Human Evolutionary Anatomy. Academic Press, London.Google Scholar
  2. Aiello LC and Wheeler P (1995) The expensive tissue hypothesis. Curr. Anthrop. 36:199–221.CrossRefGoogle Scholar
  3. Belovsky GE (1987) Foraging and optimal body size: An overview, new data and a test of alternative models. J Theor Biol 129: 275–287.CrossRefGoogle Scholar
  4. Bothwell TH and Charlton RW (1982) A general approach to the problems of iron deficiency and iron overload in the population at large. Seminars in Haematology 19: 54–67Google Scholar
  5. Chivers DJ and Hladik CH (1980) Morphology of the gastrointestinal tract in primates: comparisons with other mammals in relation to diet. J Morphol 166:337–386CrossRefGoogle Scholar
  6. Church DC and Pond WC 1982 Basic Animal Nutrition and Feeding. 3rd ed. J Wiley, New York.Google Scholar
  7. Garcia LS and Bruckner DA (1997) Diagnostic Medical Parasitology, 3rd ed., American Soc. for Microbiology Press, Washington, DC.Google Scholar
  8. Grove DI (1990) A History of Human Helmintology, CAB International, WallingfordGoogle Scholar
  9. Hafner MS and Nadler SA (1988) Phylogenetic trees support the coevolution of parasites and their hosts. Nature 332: 258–259.CrossRefGoogle Scholar
  10. Harrison LJ and Parkhouse RM (1989) Taenia saginata and Taenia solium: Reciprocal models. Acta Leiden. 57: 143–152Google Scholar
  11. Joyeux C and Baer J-G (1961) Classe des cestodes, in: Grasse P-P (ed.) Traite de Zoologie, vol. IV, Masson et Cie. Paris, pp. 347–560Google Scholar
  12. Lee-Thorp JA (1989) Stable Carbon Isotopes in Deep Time: The Diets of Fossil Fauna and Hominids, PhD Thesis, University of Cape TownGoogle Scholar
  13. Lee-Thorp JA and Van der Merwe NJ (1993) Stable carbon isotope studies of Swartkrans fossils, In Brain CK (ed) Swartkrans: A Cave’s Chronicle of Early Man, Transvaal Museum Monograph 8: 251–256Google Scholar
  14. Lucas PW, Corlett RT, and Luke DA (1985) Plio-Pleistocene hominid diets: An approach combining masticatory and ecological analysis. J. Hum. Evol. 14: 187–202.CrossRefGoogle Scholar
  15. McNeil Alexander R (1991) Optimisation of gut structure and diet for higher vertebrate herbivores. Phil. Trans. R. Soc. Lond. B 333: 249–255Google Scholar
  16. Martin RD, Chivers DJ, Maclarnon AM, Hladik CH (1985) Gastrointestinal allometry in primates and other mammals. In Jungers WL (ed) Size and Scaling in Primate Biology, Plenum Press, New York, p. 61–89Google Scholar
  17. McGrew C (1992) Chimpanzee Material culture Implications for Human Evolution. Cambridge University Press, Cambridge.Google Scholar
  18. Miyazaki I (1991) An Illustrated Book of Helminthic Zoonoses. IMFJ, TokyoGoogle Scholar
  19. Mosimabale FO and Belino ED (1980) The recovery of viable Taenia saginata cysticerci in grilled beef “suya” in Nigeria. Int. J Zoonoses 7: 115–119.Google Scholar
  20. Nicolosi RJ and Hunt RD (1979) Dietary Allowances for Nutrients in Non-Human Primates. In Hayes KC (ed). Primates in Nutritional Research, Academic Press, New York, p. 11–37Google Scholar
  21. Okamoto M, Bessho Y, Kamiya M, Kurosawa T, Hori T (1995) Phylogenetic relationships within Taenia taeniaformis variants and other taeniid cestodes inferred from the nucleotide sequence of the cytochrome c oxidase subunit I gene. Parasitology Research 81: 451–458.CrossRefGoogle Scholar
  22. Rose L and Mashall E (1996) Meat eating, hominid sociality and home bases revisited. Curr. Anthrop. 37: 307–338.CrossRefGoogle Scholar
  23. Sillen A (1986) Biogenic and diagenetic Sr/Ca in Plio-Pleistocene fossils in the Omo Shungura formation, Palaeobiology 12: 311–323.Google Scholar
  24. Sillen A (1992) Strontium-calcium (Sr/Ca) of Australopithecus robustus and associated fauna from Swartkrans. J Hum Evol 23: 495–516.CrossRefGoogle Scholar
  25. Sprehn CEW (1932) Lehrbuch der Helmintologie, Gebruder Borntrager, BerlinGoogle Scholar
  26. Teleki G (1973) The Predatory Behavior of Wild Chimpanzees. Bucknell Univ. Press, Lewisburg.Google Scholar
  27. Vila C, Savolainen P, Maldonado JE, Amorim IR, Rice JE, Honeycutt RL, Crandall KA, Lundeberg J, Wayne RK (1997) Multiple and ancient origins of the domestic dog, Science 276: 1687–1689CrossRefGoogle Scholar
  28. Williams PL, Bannister LH, Berry MM, Collins P, Dyson M, Dusek JE Ferguson MWJ (1995) Gray’s Anatomy. 38th ed., Churchill Livingstone, London.Google Scholar
  29. Wrangham RW and Van Zinnicq Bergmann Riss E (1990) Rates of predation on mammals by Gombe chimpanzees 1972–1975. Primates 31: 157–170.CrossRefGoogle Scholar

Copyright information

© International Institute for the Study of Man 1998

Authors and Affiliations

  • M. Henneberg
    • 1
  • V. Sarafis
    • 2
  • K. Mathers
    • 3
  1. 1.Department of Anatomical SciencesUniversity of AdelaideAdelaideAustralia
  2. 2.Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneAustralia
  3. 3.Department of AnthropologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations