Forks in the road, on the way to quantum gravity

  • Rafael D. Sorkin


In seeking to arrive at a theory of “quantum gravity,” one faces several choices among alternative approaches. I list some of these “forks in the road” and offer reasons for taking one alternative over the other. In particular, I advocate the following: the sum-over-histories framework for quantum dynamics over the “observable and state-vector” framework; relative probabilities over absolute ones; spacetime over space as the gravitational “substance” (4 over 3+1); a Lorentzian metric over a Riemannian (“Euclidean”) one; a dynamical topology over an absolute one; degenerate metrics over closed timelike curves to mediate topology change; “unimodular gravity” over the unrestricted functional integral; and taking a discrete underlying structure (the causal set) rather than the differentiable manifold as the basis of the theory. In connection with these choices, I also mention some results from unimodular quantum cosmology, sketch an account of the origin of black hole entropy, summarize an argument that the quantum mechanical measurement scheme breaks down for quantum field theory, and offer a reason why the cosmological constant of the present epoch might have a magnitude of around 10−120 in natural units.


Black Hole Cosmological Constant Quantum Gravity Physical Review Topology Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ambjorn, J., Jurkiewicz, J. and Watabiki, (1995). Dynamical triangulations, a gateway to quantum gravity?Journal of Mathematical Physics,36, 6299–6339〉e-print archive: hepth/9503108〈.MathSciNetCrossRefADSGoogle Scholar
  2. Anderson, A., and DeWitt, B. S. (1986). Does the topology of space fluctuate?Foundations of Physics,16, 91–105.MathSciNetCrossRefADSGoogle Scholar
  3. Aneziris, C., Balachandran, A. P., Bourdeau, M., Jo, S., Ramadas, T. R., and Sorkin, R. D. (1989). Aspects of spin and statistics in generally covariant theories.International Journal of Modern Physics A,4, 5459–5510.MathSciNetCrossRefADSGoogle Scholar
  4. Ashtekar, A. (1991).Lectures on Non-perturbative Canonical Gravity, World Scientific, Singapore.zbMATHGoogle Scholar
  5. Bekenstein, J. D. (1975). Statistical black hole thermodynamics,Physical Review D,12, 3077–3085.MathSciNetCrossRefADSGoogle Scholar
  6. Bell, J. S. (1987).Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy, Cambridge University Press, Cambridge.Google Scholar
  7. Blumenthal, L. M., and Menger, K. (1970).Studies in Geometry, Freeman, San Francisco, Part 3: Metric Geometry.zbMATHGoogle Scholar
  8. Bohm, D. (1952).Physical Review D,85, 166, 180.zbMATHMathSciNetCrossRefADSGoogle Scholar
  9. Bombelli, L., Koul, R. K., Lee, J., and Sorkin, R. D. (1986). A quantum source of energy for black holes,Physical Review D,34, 373–383.MathSciNetCrossRefADSGoogle Scholar
  10. Borde, A., and Sorkin, R. D. (n.d.). Causal cobordism: Topology change without causal anomalies, in preparation.Google Scholar
  11. Catterall S. (n.d.). Lalttice quantum gravity: Review and recent developments, Talk at international workshop LATTICE 95, July 1995, Melbourne Australia;Nuclear Physics B (Proceedings Supplement), in press〉e-print archive: hep-lat/9510008〈.Google Scholar
  12. Daughton, A., Louko, J., and Sorkin, R. D. (1994). Initial conditions and unitarity in unimodular quantum cosmology, inProceedings of the Fifth Canadian Conference on General Relativity and Relativistic Astrophysics, R. B. Mann and R. G. McLenaghan, eds., World Scientific, Singapore, pp. 181–185,〉e-print archive: gr-qc/9305016〈.Google Scholar
  13. David, F. (1992). Simplical quantum gravity and random lattices, Lectures given at Les Houches, Session LVII, July 5–August 1, 1992: Gravitation and quantizations.Google Scholar
  14. Deser, S., and Steif, A. R. (1993). No time machines from lightlike sources in 2+1 gravity, inDirections in General Relativity, Bei-Lok Hu, and T. A. Jacobson, eds., Cambridge University Press, Cambridge, Vol. 1, p. 78.Google Scholar
  15. DeWitt, B. (1967). Quantum theory of gravity II: The manifestly covariant theory,Physical Review 162, 1195–1239.zbMATHCrossRefADSGoogle Scholar
  16. Dirac, P. A. M. (1958). The theory of gravitation in Hamiltonian form,Proceedings of the Royal Society of London A,246, 333–343.zbMATHMathSciNetADSCrossRefGoogle Scholar
  17. Dowker, F., and Kent, A. (1996). On the consistent histories approach to quantum mechanics,Journal of Statistical Physics,82, 1575–1646〉e-print archive: gr-qc/9412067〈.zbMATHMathSciNetCrossRefADSGoogle Scholar
  18. Dowker, H. F., and Sorkin, R. D. (n.d.). A spin-statistics theorem for certain topological geons, submitted〉e-print archive:gr-qc/9609064〈.Google Scholar
  19. Einstein, A. (1986). Letter to H. S. Joachim. August 14 1954, Item 13-453, cited in J. Stachel, Einstein and the quantum: Fifty years of struggle, inFrom Quarks to Quasars, Philosophical Problems of Modern Physics, R. G. Colodny, ed., University of Pittsburgh Press, pp. 380–381.Google Scholar
  20. Feynman, R. P. (1948). Spacetime approach to non-relativistic quantum mechanics,Reviews of Modern Physics,20, 367–387.MathSciNetCrossRefADSGoogle Scholar
  21. Feynman, R. P., Leighton, R. B., and Sands, M. (1965).The Feynman Lectures on Physics, Vol. III: Quantum Mechanics, Addison-Wesley, Reading, Massachusetts.Google Scholar
  22. Finkelstein, D. (1987). Finite physics, inThe Universal Turing Machine—A Half-Century Survey, R. Herken, ed., Kammerer & Unverzagt, Hamburg.Google Scholar
  23. Finkelstein, D. (1988). “Superconducting” causal nets,International Journal of Theoretical Physics,27, 473.zbMATHMathSciNetCrossRefADSGoogle Scholar
  24. Finkelstein, D. R. (1996).Quantum Relativity, Springer, New York.zbMATHGoogle Scholar
  25. Friedman, J. L., Papastamatiou, N. J., and Simon, J. Z. (1992). Failure of unitarity for interacting fields on spacetimes with closed timelike curves,Physical Review D,46, 4456.MathSciNetCrossRefADSGoogle Scholar
  26. Geroch, R. (1967). Topology in general relativity,Journal of Mathematical Physics,8, 782–786.zbMATHMathSciNetCrossRefADSGoogle Scholar
  27. Geroch, R. (1972). Einstein algebras,Communications in Mathematical Physics,26, 271–275 (1972).MathSciNetCrossRefADSGoogle Scholar
  28. Green, M. B., Schwarz, J. H., and Witten, E. (1987).Superstring Theory, Cambridge University Press, Cambridge.zbMATHGoogle Scholar
  29. Halliwell, J. J., and Hartle, J. B. (1990). Integration contours for the no-boundary wave function of the universe,Physical Review D,41, 1815.MathSciNetCrossRefADSGoogle Scholar
  30. Hartle, J. B. (1995). Spacetime quantum mechanics and the quantum mechanics of spacetime, in B. Julia and J. Zinn-Justin, eds.,Gravitation and Quantizations, Les Houches, Session LVII, 1992, Elsevier Science B. V., Amsterdam.Google Scholar
  31. Hawking, S. W. (1978). Space-time foam,Nuclear Physics B, 144, 349–362.MathSciNetCrossRefGoogle Scholar
  32. Hawking, S. W. (1979). The path-integral approach to quantum gravity, in Hawking, and W. Israel, eds., S. W.General Relativity: An Einstein Centenary Survey, Cambridge University Press, Cambridge, pp. 746–789.Google Scholar
  33. Heisenberg, W. (1930).The Physical Principles of the Quantum Theory, Dover, New York.zbMATHGoogle Scholar
  34. Horowitz, G. T. (1991). Topology change in classical and quantum gravity.Classical and Quantum Gravity,8, 587–601.zbMATHMathSciNetCrossRefADSGoogle Scholar
  35. Isham, C. J. (1990). An introduction to general topology and quantum topology, inPhysics, Geometry and Topology, H. C. Lee, ed., Plenum Press, New York, pp. 129–190.Google Scholar
  36. Isham, C. J. (1992). Conceptual and geometrical problems in canonical quantum gravity, inRecent Aspects of Quantum Fields, H. Mitter and H. Gausterer, eds., Springer, Berlin.Google Scholar
  37. Isham, C. J. (1993). Canonical quantum gravity and the problem of time, inIntegrable Systems, Quantum Groups, and Quantum Field Theories, L. A. Ibort and M. A. Rodriguez, eds., Kluwer, London, pp. 157–288 〈e-print archive: gr-gc/9210011〉.Google Scholar
  38. Isham, C. J., Kubyshin, Y., and Renteln, P. (1990). Quantum norm theory and the quantization of metric topology,Classical and Quantum Gravity,7, 1053.zbMATHMathSciNetCrossRefADSGoogle Scholar
  39. Kalmykov, M. Yu. (1995). Gauge and parametrization dependencies of the one-loop counterterms in Einstein gravity,Classical and Quantum Gravity 12, 1401–1412 〈e-print archive:hep-th/9502152〉.zbMATHMathSciNetCrossRefADSGoogle Scholar
  40. Krauss, L. M., and Turner, M. S. (n.d.). The cosmological constant is back 〈e-print archive: astro-ph/9504003〉.Google Scholar
  41. Kuchař, K. V. (1992). Time and interpretations of quantum gravity, inProceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, G. Kunstatter, D. Vincent, and J. Williams, eds., World Scientific, Singapore.Google Scholar
  42. Kuchař, K. V. (1993). Canonical quantum gravity, in“General Relativity and Gravitation 1992”: Proceedings of the Thirteenth Conference on General Relativity and Gravitation, R. J. Gleiser, C. N. Kozameh, and O. M. Moreschi, eds., IOP Publishing, Bristol.Google Scholar
  43. Louko, J., and Sorkin, R. D. (1997). Complex actions in two-dimensional topology change,Classical and Quantum Gravity,14, 179–203 〈e-print archive: gr-qc/9511023〉.zbMATHMathSciNetCrossRefADSGoogle Scholar
  44. Mandelstam, S. (1968). Feynman rules for the gravitational field from the coordinate-independent field theoretic formalism,Physical Review,175, 1604.CrossRefADSGoogle Scholar
  45. Minkowski, H. (1923). Space and time, inThe Principle of Relativity, W. Perrett and G. B. Jeffrey transl., Methuen, London.Google Scholar
  46. Nakanishi, N., and Ojima, I. (1990).Covariant Operator Formalism of Gauge Theories and Quantum Gravity, World Scientific, Singapore.Google Scholar
  47. Page, D. N. (1991). Interpreting the density matrix of the universe, inConceptual Problems of Quantum Gravity, A. Ashtekar and J. Stachel, eds., Birkhäser, Boston, pp. 116–121.Google Scholar
  48. Pauli, W. (1958).Theory of Relativity, Pergamon, Oxford, Supplementary Note 19, pp. 219–220.zbMATHGoogle Scholar
  49. Penrose, R. (1993). Gravity and quantum mechanics, inGeneral Relativity and Gravitation 1992, IOP Publishing, Bristol, pp. 179–189.Google Scholar
  50. Polyakov, A. M. (1990). Two-dimensional quantum gravity. Superconductivity at highT c, inFields, Strings and Critical Phenomena, E. Brézin and J. Zinn-Justin, eds, North-Holland, Amsterdam, pp. 305–368.Google Scholar
  51. Reichenbach, H. (1969).Axiomatization of the Theory of Relativity, University of California Press, Berkeley.Google Scholar
  52. Riemann, G. F. B. (1919).Über die Hypothesen, welche der Geometrie zugrunde liegen, H. Weyl, ed., Springer-Verlag, Berlin.Google Scholar
  53. Robb, A. A. (1936).Geometry of Time and Space, Cambridge University Press, Cambridge.Google Scholar
  54. Rovelli, C., and Smolin, L. (1990). Loop representation for quantum general relativity,Nuclear Physics B,B133, 80.MathSciNetCrossRefADSGoogle Scholar
  55. Sakharov, A. D. (1984). Cosmological transitions with changes in the signature of the metric,JETP 60, 214.Google Scholar
  56. Samuel, J. (1993). Fractional spin from gravity,Physical Review Letters 71, 215.zbMATHMathSciNetCrossRefADSGoogle Scholar
  57. Sen, A. (1982) Gravity as a spin system,Physics Letters 119B, 89–91.ADSGoogle Scholar
  58. Shankar, R. (1980).Principles of Quantum Mechanics, Plenum Press, New York, Chapter 4.Google Scholar
  59. Sinha, S., and Sorkin, R. D. (1991). A sum-over-histories account of an EPR(B) experiment,Foundations of Physics Letters 4, 303–335.MathSciNetCrossRefADSGoogle Scholar
  60. Sorkin, R. D. (1979). On the failure of the time-energy uncertainty principle,Foundations of Physics,9, 123–128.CrossRefADSGoogle Scholar
  61. Sorkin, R. D. (1983a). On the entropy of the vacuum outside a horizon, in F. de Felice, and A. Pascolini, eds.,Tenth International Conference on General Relativity and Gravitation (Held Padova, 4–9 July, 1983), Contributed Papers, Vol. II, B. Bertotti, Consiglio Nazionale Delle Ricerche, Rome, pp. 734–736.Google Scholar
  62. Sorkin, R. D. (1983b). On the entropy of the vacuum outside a horizon, in F. de Felice, and Pascolini, eds. B. Bertotti,Tenth International Conference on General Relativity and Gravitation (held Padova, 4–9 July, 1983), Contributed Papers, Consiglio Nazionale Delle Ricerche, Rome, Vol. II, pp. 734–736.Google Scholar
  63. Sorkin, R. D. (1986a). On topology change and monopole creation,Physical Review D,33, 978–982.MathSciNetCrossRefADSGoogle Scholar
  64. Sorkin, R. D. (1986b). Toward an explanation of entropy increase in the presence of quantum black holes,Physical Review Letters,56, 1885–1888.MathSciNetCrossRefADSGoogle Scholar
  65. Sorkin, R. D. (1986). Non-time-orientable Lorentzian cobordism allows for pair creation,International Journal of Theoretical Physics,25, 877–881.zbMATHMathSciNetCrossRefADSGoogle Scholar
  66. Sorkin, R. D. (1989). Classical topology and quantum phases: Quantum geons, inGeometrical and Algebraic Aspects of Nonlinear Field Theories, S. de Filippo, M. Marinaro, and G. Marmo, eds., Elsevier, Amsterdam, pp. 201–218.Google Scholar
  67. Sorkin, R. D. (1990). Consequences of spacetime topology, inProceedings of the Third Canadian Conference on General Relativity and Relativistic Astrophysics, A. Coley, F. Cooperstock, and B. Tupper, eds., World Scientific, Singapore, pp. 137–163.Google Scholar
  68. Sorkin, R. D. (1991a), Spacetime and causal sets, inRelativity and Gravitation: Classical and Quantum, J. C. D'Olivo, E. Nahmad-Achar, M. Rosenbaum, M. P. Ryan, L. F. Urrutia, and F. Zertuche, eds., World Scientific, Singapore, pp. 150–173, and references therein.Google Scholar
  69. Sorkin, R. D. (1991b). A finitary substitute for continuous topology?International Journal of Theoretical Physics,30, 923–947.zbMATHMathSciNetCrossRefADSGoogle Scholar
  70. Sorkin, R. D. (1993). Impossible measurements on quantum fields, inDirections in General Relativity: Proceedings of the 1993 International Symposium, Maryland, Vol. 2: Papers in Honor of Dieter Brill, Bei-Lok Hu and T. A. Jacobson, eds., Cambridge University Press, Cambridge 〈e-print archive: gr-qc/9302018〉.Google Scholar
  71. Sorkin, R. D. (1994a). On the role of time in the sum-over-histories framework for gravity, Presented to Conference on the History of Modern Gauge Theories, Logan, Utah, July 1987; inInternational Journal of Theoretical Physics,33, 523–534.Google Scholar
  72. Sorkin, R. D. (1994b). Quantum mechanics as quantum measure theory,Modern Physics Letters A,9, 3119–3127 〈e-print archive: gr-qc/9401003〉.zbMATHMathSciNetCrossRefADSGoogle Scholar
  73. Sorkin, R. D. (1996). Quantum measure theory and its interpretation, inProceedings of the Fourth Drexel Symposium on Quantum Nonintegrability: Quantum Classical Correspondence, D. H. Feng and B.-L. Hu, eds., International Press, pp. 205–227. 〈e-print archive: gr-qc/9507057〉.Google Scholar
  74. Sorkin, R. D., and Surya, S. (n.d.). An analysis of the representations of the mapping class group of a multi-geon three-manifold 〈e-print archive: gr-qc/9605050〉.Google Scholar
  75. Srednicki, M. (1993). Entropy and area,Physical Review Letters,71, 666–669 〈e-print archive:hep-th/9303048〉.zbMATHMathSciNetCrossRefADSGoogle Scholar
  76. Teitelboim, C. (1983) Proper-time gauge in the quantum theory of gravitation,Physical Review D,28, 297–309.MathSciNetCrossRefADSGoogle Scholar
  77. Thorne, K. S. (1993). Closed timelike curves, inGeneral Relativity and Gravitation, IOP Publishing, Bristol, pp. 295–315.Google Scholar
  78. Unruh, W. G. (1989). Unimodular theory of canonical quantum gravity,Physical Review D,40, 1048.MathSciNetCrossRefADSGoogle Scholar
  79. Von Neumann, J. (1955).Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, New Jersey, Chapter VI.zbMATHGoogle Scholar
  80. Wald, R. M. (1993). A proposal for solving the ‘problem of time’ in canonical quantum gravity, Presented at the International Symposium on Directions in General Relativity in Celebration of the Sixtieth Birthdays of Dieter Brill and Charles Misner, College Park, Maryland, May 27–29, 1993.Google Scholar
  81. Woo, C. H. (1962). Linear stochastic motions of physical systems, Berkeley University Preprint, UCRL-10431.Google Scholar
  82. York, J. W. (1993). Canonical in all directions—Quasilocal energy and the microcanonical functional integral, Talk at the symposium onDirections in General Relativity, University of Maryland, College Park, May 1993, in honor of Dieter Brill and Charles Misner.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Rafael D. Sorkin
    • 1
    • 2
  1. 1.Instituto de Ciencias NuclearesUNAMMexico
  2. 2.Department of PhysicsSyracuse UniversitySyracuse

Personalised recommendations