Anatomy and Embryology

, Volume 182, Issue 4, pp 375–400 | Cite as

The human brain at stages 21–23, with particular reference to the cerebral cortical plate and to the development of the cerebellum

  • F. Müller
  • R. O’Rahilly


The development of the human brain during the eighth embryonic week was studied in serial sections of 22 embryos, and graphic reconstructions were prepared. The cortical plate appears in stage 21 in the area of the future insula and is an excellent feature for staging. The internal capsule contains neocortical fibres. Its three main outlets begin to be present in stage 22 and lead to epithalamus, to dorsal thalamus, and to mesencephalon. At this time a well developed lateral olfactory tract can be seen. The anterior commissure appears in stage 23. A clear developmental relationship between claustrum and olfactory area is described for the first time in human embryos. The optic tract reaches the ventral area of the lateral geniculate body. Scattered fibres of the lateral lemniscus reach at least as far as the caudal mesencephalon, in which superior and inferior colliculi can be distinguished at stage 23; two caudalBlindsäcke containing ventricular recesses form in stage 23. The cerebellum is still present as a plate, but its internal bulge is considerably enlarged. It possesses radially- and tangentially-arranged cells; the latter form the external germinal layer. The dentate nucleus, as well as the inferior and superior cerebellar peduncles and some of the cerebellar commissures, are present. Compared with the highly developed and probably already functional remainder of the hindbrain, the cerebellar plate shows far less differentiation. Two caudal migratory streams (marginal and submarginal) are present and represent the corpus pontobulbare. The decussation of the pyramids appears in stage 23.

This article concludes the study of the developing human brain during the embryonic period, from stage 8 to stage 23. The series was based on 340 serially-sectioned embryos and graphic reconstructions from 89 brains. No comparable investigation of the fetal brain is available.

Key words

Human brain Cortical plate Internal capsule Cerebellar commissures Corpus striatum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman J (1982) Morphological development of the rat cerebellum and some of its mechanisms. In: Palay SL, Chan-Palay V (eds) The cerebellum-new vistas. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. Altman J, Bayer SA (1978) Prenatal development of the cerebellar system in the rat. II. Cytogenesis and histogenesis of the inferior olive, pontine gray, and the precerebellar reticular nuclei. J Comp Neurol 179:49–75PubMedCrossRefGoogle Scholar
  3. Altman J, Bayer SA (1985a, b, c) Embryonic development of the rat cerebellum. I. Delineation of the cerebellar primordium and early cell movements. II. Translocation and regional distribution of the deep neurons. III. Regional differences in the time of origin, migration, and settling of Purkinje cells. J Comp Neurol 231:1–26, 27–41, 42–65.PubMedCrossRefGoogle Scholar
  4. Altman J, Bayer SA (1986) The development of the rat hypothalamus. Adv Anat Embryol Cell Biol 100:1–178PubMedGoogle Scholar
  5. Ariëns Kappers CU (1982) The paraphysis cerebri. In: Crosby EC, Schnitzlein HN (eds) Comparative correlative neuroanatomy of the vertebrate telencephalon. Macmillan, New York, pp 249–265Google Scholar
  6. Bartelmez GW, Dekaban AS (1962) The early development of the human brain. Contrib Embryol Carnegie Instn 37:13–32Google Scholar
  7. Bayer SA (1980a) Development of the hippocampal region in the rat. I. Neurogenesis examined with3H-thymidine autoradiography. II. Morphogenesis during embryonic and early postnatal life. J Comp Neurol 190:87–114, 115–134PubMedCrossRefGoogle Scholar
  8. Bayer SA (1980b) Quantitative3H-thymidine radiographic analyses of neurogenesis in the rat amygdala. J Comp Neurol 194:845–875PubMedCrossRefGoogle Scholar
  9. Bayer SA (1984) Neurogenesis in the rat neostriatum. J Dev Neurosci 2:163–175CrossRefGoogle Scholar
  10. Bayer SA, Altman JA (1987) Directions in neurogenetic gradients and patterns of anatomical connections in the telencephalon. Prog Neurobiol 29:57–106PubMedCrossRefGoogle Scholar
  11. Bayer SA, Altman J (1990) Development of layer I and the subplate in the rat neocortex. Exp Neurol 107:48–62PubMedCrossRefGoogle Scholar
  12. Bourrat F, Sotelo C (1986) Neuronal migration and dendritic maturation of the medial cerebellar nucleus in rat embryos: an HRP in vitro study using cerebellar slabs. Brain Res 378:69–85PubMedCrossRefGoogle Scholar
  13. Brown JW (1965) Some aspects of the early development of the hippocampal formation in certain insectivorous bats. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Thieme, StuttgartGoogle Scholar
  14. Brun A (1965) The subpial granular layer of the foetal cerebral cortex in man. Acta Pathol Microbiol Immunol Scand [B] 179:1–33Google Scholar
  15. Brundin P, Strecker RE, Clarke DJ, Widner H, Nilsson OG, Astedt B, Lindvall O, Björklund A (1988) Can human fetal dopamine neuron grafts provide a therapy for Parkinson’s disease? Gash DM, Sladek JR (eds) Prog Brain Res, vol 78, Chapter 57: Transplantation into the Mammalian CNSGoogle Scholar
  16. Carpenter MB, Batton RR (1982) Connections of the fastigial nucleus in the cat and monkey. Exp Brain Res [Suppl 6]:250–291Google Scholar
  17. Chun JJM, Nakamura MJ, Shatz CJ (1987) Transient cells of the developing mammalian telencephalon are peptide-immunreactive neurons. Nature 325:617–620PubMedCrossRefGoogle Scholar
  18. Cooper ERA (1945) The development of the human lateral geniculate body. Brain 68:222–239Google Scholar
  19. Cooper ERA (1946) Accessory optic tracts in the human fetus. Brain 69:45–49Google Scholar
  20. Cooper ERA (1947) The trochlear nerve in the human embryo and fetus. Br J Ophthalmol 31:257–275PubMedGoogle Scholar
  21. Cooper ERA (1948) The development of the human auditory pathway from the cochlear ganglion to the medial geniculate body. Acta Anat 5:99–122PubMedGoogle Scholar
  22. Crosby CE, Humphrey T, Lauer EW (1962) Correlative anatomy of the nervous system. Macmillan, New YorkGoogle Scholar
  23. Eckenhoff MF, Rakic P (1984) Radial organization of the hippocampal dentate gyrus: A golgi, ultrastructural, and immunocytochemical analysis in the developing rhesus monkey. J Comp Neurol 223:1–21PubMedCrossRefGoogle Scholar
  24. Edwards MA, Caviness VS, Schneidet GD (1986) Development of cell and fiber lamination in the mouse superior colliculus. J Comp Neurol 248:395–409PubMedCrossRefGoogle Scholar
  25. Essick CR (1912) The development of the nuclei pontis and the nucleus arcuatus in man. Am J Anat 13:25–54CrossRefGoogle Scholar
  26. Fentress IC, Stanfield BB, Cowan WM (1981) Observations on the development of the striatum in mice and rats. Anat Embryol 163:275–298PubMedCrossRefGoogle Scholar
  27. Filimonoff IN (1966) The claustrum, its origin and development. J Hirnforsch 8:503–528PubMedGoogle Scholar
  28. Fredericks CA, Giolli RA, Blanks RHI, Sadun AA (1988) The human accessory optic system. Brain Res 454:116–122PubMedCrossRefGoogle Scholar
  29. Gilbert MS (1935) The early development of the human diencephalon. J Comp Neurol 62:81–115CrossRefGoogle Scholar
  30. Goffinet AM (1983) The embryonic development of the cerebellum in normal and reeler mutant mice. Anat Embryol 168:73–86PubMedCrossRefGoogle Scholar
  31. Gould BB, Rakic P (1981) The total number, time of origin and kinetics of proliferation of neurons comprising the deep cerebellar nuclei in the rhesus monkey. Exp Brain Res 44:195–206PubMedCrossRefGoogle Scholar
  32. Hallonet ME, Teillet MA, Le Douarin NM (1990) A new approach to the development of the cerebellum provided by the quailchick marker system. Development 108:19–31PubMedGoogle Scholar
  33. Hewitt W (1958) The development of the human caudate and amgdaloid nuclei. J Anat 92:377–382PubMedGoogle Scholar
  34. Hinds JW, Ruffett TL (1971) Cell proliferation in the neural tube: an electron microscopic and Golgi analysis in the mouse cerebral vesicle. Z Zellforsch 115:226–264PubMedCrossRefGoogle Scholar
  35. His W (1904) Die Entwicklung des menschlichen Gehirns während der ersten Monate. Untersuchungsergebnisse. Hirzel, LeipzigGoogle Scholar
  36. Hochstetter F (1929) Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns. II. Teil, 3. Lieferung. Die Entwicklung des Mittel- und Rautenhirns. Deuticke, ViennaGoogle Scholar
  37. Humphrey T (1960) The development of the pyramidal tracts in human fetuses, correlated with cortical differentiation. In: Tower DB, Schade JP (eds) Structure and function of the cerebral cortex. Elsevier, Amsterdam, pp 93–103Google Scholar
  38. Hynes RO, Patel R, Miller RH (1986) Migration of neuroblasts along pre-existing axonal tracts during prenatal cerebellar development. J Neurosci 6:867–876PubMedGoogle Scholar
  39. Jones EG (1986) The Thalamus. Plenum, New YorkGoogle Scholar
  40. Kahle W (1969) Die Entwicklung der menschlichen Großhirnhemisphäre. Springer, Berlin: Schriftenreihe Neurologie 1:1–116Google Scholar
  41. Keyser A (1972) The development of the diencephalon of the chinese hamster. Acta Anat [Suppl 59]:1–178Google Scholar
  42. Kostović I, Krmpotić J (1976) Early prenatal ontogenesis of the neuronal connections in the interhemispheric cortex of the human gyrus cinguli. Verh Anat Ges 70:305–316PubMedGoogle Scholar
  43. Kostović I, Rakic P (1980) Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol 9:219–242PubMedCrossRefGoogle Scholar
  44. Kuhlenbeck H (1977) Derivatives of the prosencephalon: Diencephalon and telencephalon. In: The central nervous system of vertebrates, vol 5, Part I. Karger, Basel, pp 461–888Google Scholar
  45. Laissue J (1963) Die histogenetische Gliederung der Rindenanlage des Endhirns. Acta Anat 53:158–185PubMedCrossRefGoogle Scholar
  46. Lammers GJ (1976) On the development of the strio-amygdaloid complex in the chinese hamster,Cricetulus griseus. Thesis, Brakkenstein, NijmegenGoogle Scholar
  47. Larsell O (1947) The development of the cerebellum in man in relation to its comparative anatomy. J Comp Neurol 87:85–129CrossRefPubMedGoogle Scholar
  48. Levitt P, Rakic P (1982) The time of genesis, embryonic origin and differentiation of the brain stem monoamine neurons in the rhesus monkey. Dev Brain Res 4:35–57CrossRefGoogle Scholar
  49. Marchand R (1987) Histogenesis of the subthalamic nucleus. Neuroscience 21:183–195PubMedCrossRefGoogle Scholar
  50. Marchand R, Poirier LJ (1983) Isthmic origin of neurons of the rat substantia nigra. Neuroscience 9:373–381PubMedCrossRefGoogle Scholar
  51. Marin-Padilla M (1984) Neurons of Layer I. A developmental analysis. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Chapter 14:447–478Google Scholar
  52. McConnell SK, Ghosh A, Shaty CJ (1989) Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245:978–982PubMedGoogle Scholar
  53. Molliver ME, Kostović I, van der Loos H (1973) The development of synapses in cerebral cortex of the human fetus. Brain Res 50:403–407PubMedCrossRefGoogle Scholar
  54. Morris RJ, Beech JN, Heizmann CW (1988) Two distinct phases and mechanisms of axonal growth shown by primary vestibular fibres in the brain, demonstrated by parvalubin immunohistochemistry. Neuroscience 27:571–596PubMedCrossRefGoogle Scholar
  55. Müller F, O’Rahilly R (1980) The human chondrocranium at the end of the embryonic period proper, with particular reference to the nervous system. Am J Anat 159:33–58PubMedCrossRefGoogle Scholar
  56. Müller F, O’Rahilly R (1988) The first appearance of the future cerebral hemispheres in the human embryo at stage 14. Anat Embryol 177:495–511PubMedCrossRefGoogle Scholar
  57. Müller F, O’Rahilly R (1990) The human brain at stages 18–20, including the choroid plexuses and the amygdaloid and septal nuclei. Anat Embryol 182:285–306PubMedCrossRefGoogle Scholar
  58. Mrzljak L, Uylings HBM, Kostović I, van Eden CG (1988) Prenatal development of neurons in the human prefrontal cortex: I. A qualitative study. J Comp Neurol 271:355–386PubMedCrossRefGoogle Scholar
  59. Nowakowski RS, Rakic P (1979) The mode of migration of neurons to the hippocampus: a Golgi and electron microscopic analysis in foetal rhesus monkey. J Neurocytol 8:697–718PubMedCrossRefGoogle Scholar
  60. Ogren MP, Rakic P (1981) The prenatal development of the pulvinar in the monkey:3H-thymidine autoradiographic and morphometric analyses. Anat Embryol 162:1–20PubMedCrossRefGoogle Scholar
  61. O’Rahilly R, Müller F (1986) The meninges in human development. J Neuropathol Exp Neurol 45:588–608PubMedCrossRefGoogle Scholar
  62. O’Rahilly R, Müller F (1987) Development stages in human embryos including a revision of Streeter’s “Horizons” and a Survey of the Carnegie Collection. Carnegie Instn of Washington, Washington, DC, Publication, no 637Google Scholar
  63. O’Rahilly R, Müller F, Bossy J (1982) Atlas des stades du développement du système nerveux chez l’embryon humain intact. Arch Anat Histol Embryol 65:57–76Google Scholar
  64. O’Rahilly R, Müller F, Hutchins GM, Moore GW (1984) Computer ranking of the sequence of appearance of 100 features of the brain and related structures in staged human embryos during the first 5 weeks of development. Am J Anat 171:243–257PubMedCrossRefGoogle Scholar
  65. O’Rahilly R, Müller F, Bossy J (1986) Atlas des stades du développement des formes extérieures de l’encéphale chez l’embryon humain. Arch Anat Histol Embryol 69:3–39PubMedGoogle Scholar
  66. O’Rahilly R, Müller F, Hutchins GM, Moore GW (1987) Computer ranking of the sequence of appearance of 73 features of the brain and related structures in staged human embryos during the sixth week of development. Am J Anat 180:69–86PubMedCrossRefGoogle Scholar
  67. O’Rahilly R, Müller F, Hutchins GM, Moore GW (1988) Computer ranking of the sequence of appearance of 40 features of the brain and related structures in staged human embryos during the seventh week of development. Am J Anat 182:295–317PubMedCrossRefGoogle Scholar
  68. O’Rahilly R, Müller F, Bossy J (1990) Atlas des stades du développement de l’encéphale chez l’embryon humain étudié par des réconstructions graphiques du plan médian. Arch Anat Histol Embryol. In pressGoogle Scholar
  69. Orts Llorca F (1977) Morfogenesis de los tuberculos mamilares (“Corpora mamillaria”) Arch Neurobiol 40:139–164Google Scholar
  70. Pearson AA (1939) The hypoglossal nerve in human embryos. J Comp Neurol 71:21–39CrossRefGoogle Scholar
  71. Pearson AA (1941a) The development of the nervus terminalis in man. J Comp Neurol 75:39–66CrossRefGoogle Scholar
  72. Pearson AA (1941b) The development of the olfactory nerve in man. J Comp Neurol 75:199–217CrossRefGoogle Scholar
  73. Pearson AA (1943) The trochlear nerve in human fetuses. J Comp Neurol 78:29–43CrossRefGoogle Scholar
  74. Pearson AA (1946) The development of the motor nuclei of the facial nerve in man. J Comp Neurol 85:461–476CrossRefPubMedGoogle Scholar
  75. Pearson AA (1949a) The development and connections of the mesencephalic root of the trigeminal nerve in man. J Comp Neurol 90:1–46CrossRefPubMedGoogle Scholar
  76. Pearson AA (1949b) Further observations on the mesencephalic root of the trigeminal nerve. J Comp Neurol 91:142–194CrossRefGoogle Scholar
  77. Rakic P (1974) Embryonic development of the pulvinar-LP complex in man. In: Cooper IS, Rakic P (eds) The Pulvinar-LP complex. Thomas, Springfield, Illinois, pp 3–35Google Scholar
  78. Rakic P (1977) Genesis of the dorsal lateral geniculate nucleus in the rhesus monkey: site and time of origin, kinetics of proliferation, routes of migration and pattern of distribution of neurons. J Comp Neurol 176:23–52PubMedCrossRefGoogle Scholar
  79. Rakic P, Nowakowski RS (1981) The time of origin of neurons in the hippocampal region of the rhesus monkey. J Comp Neurol 196:99–128PubMedCrossRefGoogle Scholar
  80. Rakic P, Sidman RL (1969) Telencephalic origin of pulvinar neurons in the fetal human brain. Z Anat Entwicklungsgesch 129:53–82PubMedCrossRefGoogle Scholar
  81. Ricardo JA, Koh ET (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Research 153:1–26PubMedCrossRefGoogle Scholar
  82. Rickmann M, Wolff JR (1985) Prenatal gliogenesis in the neopallium of the rat. Adv Anat Embryol Cell Biol 93:1–104PubMedGoogle Scholar
  83. Rickmann M, Chronwall BM, Wolff JR (1979) On the development of non-pyramidal neurons and axons outside the cortical plate: the early marginal zone as a pallial anlage. Anat Embryol 151:285–307CrossRefGoogle Scholar
  84. Rickmann M, Amari DG, Cowan WM (1987) Organization of radial glial cells during the development of the rat dentate gyrus. J Comp Neurol 264:449–479PubMedCrossRefGoogle Scholar
  85. Sabin FR (1901) An atlas of the medulla and midbrain. Friedenwald, BaltimoreGoogle Scholar
  86. Shaner RF (1932) The development of the nuclei and tracts of the midbrain. J Comp Neurol 55:493–504CrossRefGoogle Scholar
  87. Shatz CJ, Chun JJ, Luskin MB (1988) The role of the subplate in the development of the mammalian telencephalon. In: Peters A, Jones EG (eds) Cerebral cortex, vol 7. Plenum, New York, pp 35–58Google Scholar
  88. Sherk H (1986) The claustrum and the cerebral cortex. In: Jones EG, Peters A (eds) Cerebral cortex, vol 5. Plenum, New York, pp 467–495Google Scholar
  89. Shuangshoti S, Netsky MG (1966) Histogenesis of choroid plexus in man. Am J Anat 118:283–315PubMedCrossRefGoogle Scholar
  90. Sidman RL, Rakic P (1982) Development of the human central nervous system. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system, vol 1. Thomas, SpringfieldGoogle Scholar
  91. Smart IHM (1976) A pilot study of cell production by the ganglionic eminences of the developing mouse brain. J Anat 121:71–84PubMedGoogle Scholar
  92. Smart IHM, McSherry GM (1982) Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. J Anat 134:415–442PubMedGoogle Scholar
  93. Spector R, Johanson CE (1989) The mammalian choroid plexus. Sci Am 261:68–74PubMedCrossRefGoogle Scholar
  94. Stensaas LJ (1967) The development of hippocampal and dorsolateral pallial regions of the cerebral hemisphere in fetal rabbits. I. Fifteen millimeter stage, spongioblast morphology. J Comp Neurol 129:59–69CrossRefGoogle Scholar
  95. Takeuchi Y, Matsushima S, Matsushima R, Hopkins DA (1983) Direct amygdaloid projections to the dorsal motor nucleus of the vagus nerve: a light and electron microscopic study in the rat. Brain Res 280:143–147PubMedCrossRefGoogle Scholar
  96. Tello JF (1934) Les différenciations neurofibrillaires dans le prosencéphale de la souris de 4 a 15 millimètres. Trav Lab Rech Biol Univ Madrid 29:339–395Google Scholar
  97. Tello JF (1938) Histogenèse du cervelet et ses voies chez la souris blanche. Trav Lab Rech Biol Univ Madrid 32:1–74Google Scholar
  98. Turkewitsch N (1935) Die Entwicklung des Aquaeductus cerebri des Menschen. Morphol Jahrb 76:421–447Google Scholar
  99. van der Kooy D, Koda LY, McGinty JF, Gerfen ChR, Bloom FE (1984) The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol 224:1–24PubMedCrossRefGoogle Scholar
  100. Verbitskaya LB (1969) Some aspects of the ontophylogenesis of the cerebellum. In: Llinas R (ed) Neurobiology of cerebellar evolution and development. Proc Inst Biomed Res Am Med Ass, ChicagoGoogle Scholar
  101. de Vries JIP, Visser GHA, Prechtl HFR (1982) The emergence of fetal behaviour. I. Qualitative aspects. Early Hum Dev 7:301–322PubMedCrossRefGoogle Scholar
  102. Wilson EE, Windle WF, Fitzgerald JE (1941) Development of the tractus solitarius. J Comp Neurol 74:287–307CrossRefGoogle Scholar
  103. Windle WF (1970) Development of neural elements in human embryos of four to seven weeks gestation. Exp Neurol [Suppl 5] 28:44–83PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • F. Müller
    • 1
  • R. O’Rahilly
    • 1
  1. 1.Carnegie Laboratories of Embryology, California Primate Research Center, and Departments of Human Anatomy and NeurologyUniversity of CaliforniaDavisUSA

Personalised recommendations