Arkiv för Matematik

, Volume 42, Issue 1, pp 87–106 | Cite as

Analyticity of the density of electronic wavefunctions

  • Søren Fournais
  • Maria Hoffmann-Ostenhof
  • Thomas Hoffmann-Ostenhof
  • Thomas Østergaard Sørensen


We prove that the electronic densities of atomic and molecular eigenfunctions are real analytic inR 3 away from the nuclei.


Electronic Wavefunctions Molecular Eigenfunctions 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T. andSørensen, T. Ø., The electron density is smooth away from the nuclei,Comm. Math. Phys. 228 (2002), 401–415.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T. andSørensen, T. Ø., On the regularity of the density of electronic wavefunctions,Contemp. Math.,307 (2002), 143–148.Google Scholar
  3. 3.
    Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T. andSørensen, T. Ø., Electron wavefunctions and densities for atoms,Ann. Henri Poincaré 2 (2001), 77–100.CrossRefGoogle Scholar
  4. 4.
    Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T. andStremnitzer, H., Local properties of Coulombic wave functions,Comm. Math. Phys. 163 (1994), 185–215.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hörmander, L.,Linear Partial Differntial Operators, Springer-Verlag, Berlin-New York, 1976.Google Scholar
  6. 6.
    Kato, T., On the eigenfunctions of many-particle systems in quantum mechanics,Comm. Pure Appl. Math. 10 (1957), 151–177.zbMATHMathSciNetGoogle Scholar
  7. 7.
    Kato, T.,Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1980.zbMATHGoogle Scholar
  8. 8.
    Landau, L. D. andLifschitz, E. M.,Quantum Mechanics. Part 1. Non-relativistic Theory, OGIZ, Moscow-Leningrad, 1948, (Russian). English transl.:Quantum Mechanics. Non-relativistic Theory. Course of Theoretical Physics, vol.3, Pergamon Press, London, 1958.Google Scholar
  9. 9.
    Reed, M. andSimon, B.,Methods of Modern Mathematical Physics I–IV, Academic Press, New York-London, 1972–78.Google Scholar
  10. 10.
    Simon, B., Schrödinger semigroups,Bull. Amer. Math. Soc. 7 (1982), 447–526.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2004

Authors and Affiliations

  • Søren Fournais
    • 1
  • Maria Hoffmann-Ostenhof
    • 2
  • Thomas Hoffmann-Ostenhof
    • 3
    • 4
  • Thomas Østergaard Sørensen
    • 5
    • 6
  1. 1.Laboratoire de MathématiquesUniversité Paris-Sud-Bât 425Orsay CedexFrance
  2. 2.Institut für MathematikUniversität WienViennaAustria
  3. 3.Institut für Theoretische ChemieUniversität WienViennaAustria
  4. 4.The Erwin Schrödinger InternationalInstitute for Mathematical PhysicsViennaAustria
  5. 5.Department of Mathematical SciencesAalborg UniversityAalborg EastDenmark
  6. 6.Mathematisches InstitutUniversität MünchenMunchenGermany

Personalised recommendations