, 18:43 | Cite as

Effect of calorie restriction on liver and kidney glutathione in aging emory mice

  • Masatoshi Mune
  • Mohsen Meydani
  • Jessica Jahngen-Hodge
  • Antonio Martin
  • Donald Smith
  • Vicki Palmer
  • Jeffrey B. Blumberg
  • Allen Taylor


Increases in antioxidant defense capacity have been associated with increases in the health and life span of calorie restricted animals. Emory mice develop late-life cataract, a lesion associated with oxidative damage and loss of lens glutathione (GSH). The effect of calorie restriction on GSH in liver and kidney in this model has not been explored. GSH and oxidized GSH (GSSG) were measured by HPLC in liver and kidney of Emory mice fed a control diet (C; 85% calories of ad-lib fed mice) or 60% calorie intake of C (R; 40% calorie restriction relative to C mice) for up to 22 mo age. Liver GSH concentration increased significantly in C and R mice from 4.5 to 12 mo old with no difference observed between the two groups. At 22 mo of age, liver GSH was lower than that of 12 mo old in both groups. As compared with GSH at 12 mo old, this decrease was almost twice as greater in C (70%, p=0.001) than in R mice (36%, p=0.02), so that R mice had a significantly higher concentration of GSH in liver than C mice at 22 mo of age (R = 32.8+5.1, C= 22.1+8.3 imol GSH/g protein, p<0.01). Liver GSSG was similar in C and R mice at 12 mo of age (4.45+1.35 vs. 4.75+1.83 imol GSSG/g protein), but increased in R mice at 22 mo (R=5:43±1.48; C=3.22±1.02, p<0.01). Therefore, at 22 mo old, total liver glutathione (GSH+GSSG) was higher in R than in C mice. There was no significant difference in GSH, GSSG and total GSH in kidney from C and R mice at these ages. Thus, calorie restriction reduces the age-related loss of GSH antioxidant capacity in liver but not kidney of Emory mice.


  1. 1.
    Cheney K. E., Liu R. K., Smith G. S., Meredith P. J., McKey M. R., and Walford R. L., The effect of dietary restriction of varying duration on survival, tumor patterns, immune function, and body temperature in B10C3F1 female mice. J. Gerontol., 38: 420–430, 1983.PubMedGoogle Scholar
  2. 2.
    Weindruch R., Walford R. L., Fligiel S., and Guthrie D., The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J. Nutr., 116: 641–654, 1986.PubMedGoogle Scholar
  3. 3.
    Yu B. P., Laganiere S., and Kim J. W., Influence of life-prolonging food restriction on membrane lipoperoxidation and antioxidant status, in Oxygen Radicals in Biology and Medicine, Basic Life Science, Simic MG, et al., Editor.; Plenum Press: New York. p. 1067–1073, 1988.Google Scholar
  4. 4.
    Laganiere S. A., and Yu B. P., Effect of chronic food restriction in aging rats. I: Liver subcellular membranes. Mech. Ageing. Dev., 48: 207–219, 1989.PubMedCrossRefGoogle Scholar
  5. 5.
    Beutler E., Nutritional and metabolic aspects of glutathione. Annual Rev. Nutr., 9: 287–302, 1989.CrossRefGoogle Scholar
  6. 6.
    Gibson D., Hawtylko J., and McKay P.B., GSH-dependent inhibition of lipid peroxidation: properties of a potent cytosolic system which protects cell membrane. Lipids, 20:704–711, 1985.PubMedGoogle Scholar
  7. 7.
    Mannervik B., Glutathione peroxidase. Methods Enzymol., 113: 490–495, 1985.PubMedGoogle Scholar
  8. 8.
    Meister A., and Anderson M. E., Glutathione. Ann. Rev. Biochem., 52:711–760, 1983.PubMedCrossRefGoogle Scholar
  9. 9.
    Taylor A., Jacques P. F., and Dorey C. K., Oxidation and aging: impact on vision., inAntioxidants: Chemical, Physiological, Nutritional and Toxicological Aspects., Williams GM, Editor.; Princeton Publishing Co.: Princeton, NJ. p. 349–371, 1992.Google Scholar
  10. 10.
    Reed D. J., Regulation of reductive processes by glutathione-Biochem. Pharmacol., 35: 7–13, 1986.Google Scholar
  11. 11.
    Larsson A., Orrenius S., Holmgren A., and Mannervik B., Functions of glutathione.; New York: Raven Press. 1983.Google Scholar
  12. 12.
    Winkler B. S., DeSanti N., and Solomon F., Multiple NADPH-producing pathways control glutathione (GSH) content in retina. Exp, Eye Res., 43: 829–847, 1986.Google Scholar
  13. 13.
    Neal R. A., Meatbolism of toxic substances., in Toxicology, the basic science of toxicology., Doull J, Klaassen CD, and Amdur MO, Editor.; MacMillan Publishing Co.: New York. p. 56–83, 1980.Google Scholar
  14. 14.
    Stoh S. J., and Hassing J. M., Glutathione levels in hepatic and extrahepatic tissues of mice as a function of age. Age, 3:11–15, 1980.Google Scholar
  15. 15.
    Julius M., Lang C. A., Gleiberman L, Harburg E., DiFranceisco W., and Schork A., Glutathione and morbidity in a community-based sample of elderly. J. Clin. Epi., 47: 1021–1026, 1994.CrossRefGoogle Scholar
  16. 16.
    Favilli F., Iantomasi T., Marraccini P., Stio M., Lunghi B., Treves C., and Vincenzini M. T., Relationship between age and GSH metabolism in synaptosomes of rat cerebral cortex. Neurobiol. Aging, 15: 429–433, 1994.PubMedCrossRefGoogle Scholar
  17. 17.
    Kretzschmar M., and Muller D., Aging, training and exercise. A review of effects on plasma glutathione and lipid peroxides. Sports Med., 15: 196–209, 1993.PubMedCrossRefGoogle Scholar
  18. 18.
    Lang C. A., Naryshkin S., Schneider D. L., Mills B. J., and Lindeman R. D., Low blood glutathione levels in healthy aging adults. J. Lab. Clin. Med., 120: 720–725, 1992.PubMedGoogle Scholar
  19. 19.
    Vogt B. L., and Richie J. P. J., Fasting-induced depletion of glutathione in the aging mouse: Biochem. Pharmacol., 46: 257–263, 1993.Google Scholar
  20. 20.
    Hazelton G. A., and Lang C. A., Glutathione contents of tissues in the aging mouse. Biochem. J., 188: 25–30, 1979.Google Scholar
  21. 21.
    Imanishi H., Nakai T., Abe T., and Takino T., Glutathione metabolism in red cell aging. Mech, Ageing Dev., 32: 57–62, 1985.CrossRefGoogle Scholar
  22. 22.
    Furukawa T., Meydani S. N., and Blumberg J. B., Reversal of age-associated decline in immune responsiveness by dietary glutathione supplementation in mice. Mech. Ageing Dev., 38:107–117, 1987.PubMedCrossRefGoogle Scholar
  23. 23.
    Kuck J. F. R., Late onset heredity cataract of the emery mouse, a model for human senile cataract. Exp. Eye Res., 50: 659–664, 1990.PubMedCrossRefGoogle Scholar
  24. 24.
    Terameto S., Fukuchi Y., Uejima Y., Ito H., and Orimo H., Age-related changes in GSH content of eyes in mice—a comparison of senescence-accelerated mouse (SAM) and C57BL/J mice. Comp. Biochem. Physiol., 102: 693–696, 1992.CrossRefGoogle Scholar
  25. 25.
    Taylor A., Lipman R. D., Jahngen-Hodge J., Palmer V., Smith D., Padhye N., Dallal G. E., Cyr D. E., Laxman E., Shepard D., Marrow F., Salmon R., Perrone G., Asmundsson G., Meydani M., Blumberg J., Mune M., Harrison D., Archer J. R., and Shigenaga M., Dietary calorie restriction in the Emory mouse: effect on lifespan, eye lens cataract prevalence and progression, level of ascorbate, glutathione, glucose, and glycohemoglubin, tail collagen breaktime, DNA and RNA oxidation, skin integrity, fecundity, and cancer. Mech. Ageing Dev., 79: 33–57, 1995.PubMedCrossRefGoogle Scholar
  26. 26.
    Kamei A., Glutathione levels of the human crystalline lens in aging and its antioxidant effect against the oxidation of lens proteins. Biol. Pharmac. Bull., 16: 870–875, 1993.Google Scholar
  27. 27.
    Stio M., Iantomasi T., Favilli F., Marraccini P., Lungh i. B., Vincenzini M., and Treves C., Glutathione metabolism in heart and liver of the aging rat. Biochem. Cell Biol., 72: 58–61, 1994.PubMedCrossRefGoogle Scholar
  28. 28.
    Taylor A., Zuliani A. M., Hopkins R. E., Dallal G. E., Treglia P., Kuck J. F. R., and Kuck K., Moderate caloric restriction delays cataract formation in the Emory mouse. FASEB J., 3: 1741–1746, 1989.PubMedGoogle Scholar
  29. 29.
    Mura C. V., Roh D., Smith D., Palmer V., Padyhe N., and Taylor A., Cataract incidence and analysis of lens crystallins in the water-, urea-and SDS-solublefractions of Emory mice fed a diet restricted by 40% in calories. Curr. Eye Res., 12:1081–1092, 1993.PubMedGoogle Scholar
  30. 30.
    Fariss M. W., and Reed D. J., High performance liquid chromatography of thiols and disulfides: dinitrophenol derivatives. Methods Enzymol., 143: 101–109., 1987.PubMedCrossRefGoogle Scholar
  31. 31.
    Brigelius R. M. C., Akerboom T., and Seis H., Identification and quantitation of glutathione in hepatic protein mixed disulfides and its relationship to glutathione disulfide. Biochem. Pharmacol., 32: 2529–2534, 1983.PubMedCrossRefGoogle Scholar
  32. 32.
    Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J., Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193: 265, 1951.PubMedGoogle Scholar
  33. 33.
    Gong X., Shang F., Palmer H., Mura C., Scrofano M., Jahngen-Hodge J., Smith D., Khu P., and Taylor A., Effect of dietary calorie restriction and aging on activities of antioxidant enzymes in the lens of Emory mice. Invest. Ophtalmol. Vis. Sci., 36: S525, 1995.Google Scholar
  34. 34.
    Rao G., Xia E., Nadakavukaren M. J., and Richardson A., Effect of dietary restriction on the age-dependent changes in the expression of antioxidant enzymes in rat liver. J. Nutr., 120: 602–609, 1990.PubMedGoogle Scholar
  35. 35.
    Taylor A., Jahngen-Hodge J., Smith D. E., Palmer V. J., Dallal G. E., Lipman R. D., Padhye N., and Frei B., Dietary Restriction delays catract and reduces ascorbate levels in Emory mice. Exp. Eye Res.,: (in press), 1995.Google Scholar
  36. 36.
    Richie J. P. J., Leutzinger Y., Parthasarathy S., Malloy V., and Orentreich N., Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J., 8: 1302–1307, 1994.PubMedGoogle Scholar

Copyright information

© American Aging Association, Inc. 1995

Authors and Affiliations

  • Masatoshi Mune
    • 2
  • Mohsen Meydani
    • 1
    • 3
  • Jessica Jahngen-Hodge
    • 1
  • Antonio Martin
    • 1
  • Donald Smith
    • 1
  • Vicki Palmer
    • 1
  • Jeffrey B. Blumberg
    • 1
  • Allen Taylor
    • 1
  1. 1.Jean Mayer USDA Human Nutrition ResearchCenter on Aging at Tufts UniversityBostonUSA
  2. 2.Department of MedicineWakayama Medical CollegeWakayamaJapan
  3. 3.J. M.-USDA Human Nutrition ResearchCenter on Aging at Tufts UniversityBoston

Personalised recommendations