The Journal of Membrane Biology

, Volume 4, Issue 1, pp 358–394 | Cite as

The mechanism of cation permeation in rabbit gallbladder

Dilution potentials and biionic potentials
  • Peter H. Barry
  • Jared M. Diamond
  • Ernest M. Wright


The experimental measurements of passive ion permeation in rabbit gallbladder presented in this paper include: single-salt dilution potentials as a function of concentration gradient; comparison of dilution potentials for different alkali chlorides; comparison of biionic potentials for different alkali chlorides; and biionic mixture potentials as a function of cation concentration gradient. Both dilution potentials and biionic potentials yield the permeability sequence K+>Rb+>Na+>Li+>Cs+, a sequence consistent with simple considerations of ion-site interactions and ion hydration energies. Construction of empirical selectivity isotherms for alkali cation permeation in epithelia shows that permeability ratios are nearer one in the gallbladder and other epithelia than in most other biological membranes, indicating a relatively hydrated permeation route. Evaluation of the results of this and the preceding paper suggests the following: that cations permeate gallbladder epithelium via channels with fixed neutral sites; that the rate-controlling membrane is thick enough that microscopic electroneutrality must be obeyed; that virtually all anion conductance is in a shunt which develops with time after dissection; that apparent permeability changes with solution composition are due to the non-ideal activity factorn being less than 1.0; that effects of pH, Ca++, and ionic strength may involve changes in the anion/cation mobility ratio owing to changes in wall charges or dipoles; and that the permeation route may reside in the tight junctions. A similar mechanism may be applicable to cation permeation in other epithelia.


Tight Junction Permeability Ratio Cation Permeability Toad Urinary Bladder Permeability Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barry, P. H., Diamond, J. M. 1970. Junction potentials, electrode standard potentials, and other problems in interpreting electrical properties of membranes.J. Membrane Biol. 3:93.CrossRefGoogle Scholar
  2. —— 1971. A theory of ion permeation through membranes with fixed neutral sites.J. Membrane Biol. 4:295.CrossRefGoogle Scholar
  3. Bungenberg de Jong, H. G. 1949. Reversal of charge phenomena, equivalent weight and specific properties of the ionised groups.In: Colloid Science, vol. 2. H. R. Kruyt, editor. p. 259. Elsevier, New York.Google Scholar
  4. Cass, A., Finkelstein, A., Krespi, V. 1970. The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.J. Gen. Physiol. 56:100.PubMedCrossRefGoogle Scholar
  5. Conti, F., Eisenman, G. 1965. The steady-state properties of an ion exchange membrane with fixed sites.Biophys. J. 5:511.PubMedGoogle Scholar
  6. —— 1966. The steady-state properties of an ion exchange membrane with mobile sites.Biophys. J. 6:227.PubMedGoogle Scholar
  7. Diamond, J. M. 1962. The mechanism of solute transport by the gall-bladder.J. Physiol. 161:474.PubMedGoogle Scholar
  8. — 1964. The mechanism of isotonic water transport.J. Gen. Physiol. 48:15.PubMedCrossRefGoogle Scholar
  9. — 1968. Transport mechanisms in the gall-bladder.In: Handbook of Physiology: Alimentary Canal, vol. 5, p. 2451. American Physiological Society, Washington.Google Scholar
  10. —, Wright, E. M. 1969. Biological membranes: The physical basis of ion and nonelectrolyte selectivity.Ann. Rev. Physiol. 31:581.CrossRefGoogle Scholar
  11. Doremus, R. H. Ion exchange in glasses.In: Ion Exchange, vol. 2. J. A. Marinsky, editor. p. 1. Dekker, New York.Google Scholar
  12. Eisenman, G. 1961. On the elementary atomic origin of equilibrium ionic specificity.In: Symposium on Membrane Transport and Metabolism. A. Kleinzeller and A. Kotyk, editors. p. 163. Academic Press, New York.Google Scholar
  13. — 1962. Cation selective glass electrodes and their mode of operation.Biophys. J. 2; Part 2:259.PubMedGoogle Scholar
  14. — 1963. The influence of Na, K, Li, Rb, and Cs on cellular potentials and related phenomena.Bol. Inst. Estud. Méd. Biol. 21:155.Google Scholar
  15. — 1965. Some elementary factors involved in specific ion permeation.In: Proc. 23rd Intern. Congr. Physiol. Sci., Tokyo. p. 489. Excerpta Med. Found., Amsterdam.Google Scholar
  16. — 1967. The origin of the glass-electrode potential.In: Glass Electrodes for Hydrogen and other Cations. G. Eisenman, editor. p. 133. Dekker, New York.Google Scholar
  17. — 1969. The ion exchange characteristics of the hydrated surface of Na+ selective glass electrodes.In: Glass Microelectrodes. M. Lavallée, O. Schanne, and N. C. Hébert, editors. p. 32. Wiley, New York.Google Scholar
  18. —, Ciani, S., Szabo, G. 1969. The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents.J. Membrane Biol. 1:94.CrossRefGoogle Scholar
  19. Garrels, R. M., Christ, C. L. 1965. Solutions, Minerals, and Equilibria. Harper and Row, New York.Google Scholar
  20. Goldman, D. E. 1943. Potential, impedance, and rectification in membranes.J. Gen. Physiol. 27:37.CrossRefGoogle Scholar
  21. Goodenough, D. A., Revel, J. P. 1970. A fine structural analysis of intercellular junctions in the mouse liver.J. Cell Biol. 45:272.PubMedCrossRefGoogle Scholar
  22. Hagiwara, S., Toyama, K., Hayashi, H. 1971. Mechanisms of anion and cation permeation in the resting membrane of a barnacle muscle fiber.J. Gen. Physiol. (in press).Google Scholar
  23. Hodgkin, A. L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. 108:37.Google Scholar
  24. Leb, D. E., Hoshiko, T., Lindley, B. D. 1965. Effects of alkali metal cations on the potential across toad and bullfrog urinary bladder.J. Gen. Physiol. 48:527.PubMedCrossRefGoogle Scholar
  25. Lindley, B. D., Hoshiko, T. 1964. The effects of alkali metal cations and common anions on the frog skin potential.J. Gen. Physiol. 47:749.PubMedCrossRefGoogle Scholar
  26. Machen, T. E. 1970. Anion Selectivity and Permeation Mechanism in Rabbit Gallbladder Epithelium. Ph. D. Dissertation, University of California at Los Angeles.Google Scholar
  27. —, Diamond, J. M. 1969. An estimate of the salt concentration in the lateral intercellular spaces of rabbit gall-bladder during maximal fluid transport.J. Membrane Biol. 1:194.CrossRefGoogle Scholar
  28. McLaughlin, S. G. A., Szabo, G., Eisenman, G., Ciani, S. 1970. The effects of surface charge on the conductance of phospholipid membranes.Proc. Nat. Acad. Sci. 67:1268.PubMedCrossRefGoogle Scholar
  29. Neumcke, B., Läuger, P. 1969. Nonlinear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst-Planck equations.Biophys. J. 9:1160.PubMedGoogle Scholar
  30. Robinson, R. A., Stokes, R. H. 1965. Electrolyte Solutions. Butterworths, London.Google Scholar
  31. Rothstein, A., Demis, C. 1953. The relationship of the cell surface to metabolism. The stimulation of fermentation by extracellular potassium.Arch. Biochem. Biophys. 44:18.PubMedCrossRefGoogle Scholar
  32. Sandblom, J. P., Eisenman, G. 1967. Membrane potentials at zero current: the significance of a constant ionic permeability ratio.Biophys. J. 7:217.PubMedCrossRefGoogle Scholar
  33. Schultz, S. G., Curran, P. F., Wright, E. M. 1967. Interpretation of the hexose-dependent electrical potential differences in small intestine.Nature 214:509.PubMedCrossRefGoogle Scholar
  34. Smulders, A. P. 1970. The Permeability of the Gall-Bladder to Non-Electrolytes. Ph. D. Dissertation, University of California at Los Angeles.Google Scholar
  35. Smulders, A. P., Wright, E. M. 1971. The magnitude of non-electrolyte selectivity in the gallbladder epithelium.J. Membrane Biol. (in press).Google Scholar
  36. Smyth, D. H., Wright, E. M. 1966. Streaming potentials in the rat small intestine.J. Physiol. 182:591.PubMedGoogle Scholar
  37. Szabo, G., Eisenman, G., Ciani, S. 1969. The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes.J. Membrane Biol. 1:346.CrossRefGoogle Scholar
  38. Teorell, T. 1953. Transport processes and electrical phenomena in ionic membranes.Prog. Biophys. Biophys. Chem. 3:305.Google Scholar
  39. Tormey, J. M., Diamond, J. M. 1967. The ultrastructural route of fluid transport in rabbit gall bladder.J. Gen. Physiol. 50:2031.PubMedCrossRefGoogle Scholar
  40. Wheeler, H. O. 1963. Transport of electrolytes and water across wall of rabbit gall bladder.Amer. J. Physiol. 205:427.PubMedGoogle Scholar
  41. Wright, E. M., Barry, P. H., Diamond, J. M. 1971. The mechanism of cation permeation in rabbit gallbladder: Conductances, the current-voltage relation, the concentration dependence of anion-cation discrimination, and the calcium competition effect.J. Membrane Biol. 4:331.CrossRefGoogle Scholar
  42. —, Diamond, J. M. 1968. Effects of pH and polyvalent cations on the selective permeability of gall-bladder epithelium to monovalent ions.Biochim. Biophys. Acta 163:57.PubMedCrossRefGoogle Scholar
  43. —, Prather, J. W. 1970. The permeability of the frog choroid plexus to nonelectrolytes.J. Membrane Biol. 2:127.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1971

Authors and Affiliations

  • Peter H. Barry
    • 1
  • Jared M. Diamond
    • 1
  • Ernest M. Wright
    • 1
  1. 1.Department of PhysiologyUniversity of California Medical CenterLos Angeles

Personalised recommendations