The Journal of Membrane Biology

, Volume 4, Issue 1, pp 331–357 | Cite as

The mechanism of cation permeation in rabbit gallbladder

Conductances, the current-voltage relation, the concentration dependence of anion-cation discrimination, and the calcium competition effect
  • Ernest M. Wright
  • Peter H. Barry
  • Jared M. Diamond


The questions underlying ion permeation mechanisms, the types of experiments available to answer these questions, and the properties of some likely permeation models are examined, as background to experiments designed to characterize the mechanism of alkali cation permeation across rabbit gallbladder epithelium. Conductance is found to increase linearly with bathing-solution salt concentrations up to at least 400mm. In symmetrical solutions of single alkali chloride salts, the conductance sequence is K+>Rb+>Na+>Cs+∼Li+. The current-voltage relation is linear in symmetrical solutions and in the presence of a single-salt concentration gradient up to at least 800 mV. The anion/cation permeability ratio shows little change with concentration up to at least 300mm. Ca++ reduces alkali chloride single-salt dilution potentials, the magnitude of the effect being interpreted as an inverse measure of cation equilibrium constants. The equilibrium-constant sequence deduced on this basis is K+>Rb+>Na+∼Cs+∼Li+. These results suggest (1) that the mechanism of cation permeation in the gallbladder is not the same as that in a macroscopic ion-exchange membrane; (2) that cation mobility ratios are closer to one than are equilibrium-constant ratios; (3) that the rate-limiting step for cation permeation is in the membrane interior rather than at the membrane-solution interface; and (4) that the rate-controlling membrane is one which is sufficiently thick that it obeys microscopic electroneutrality.


Alkali Cation Permeability Ratio Unstirred Layer Alkali Chloride Gallbladder Epithelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barry, P. H., Diamond, J. M. 1970. Junction potentials, electrode standard potentials, and other problems in interpreting electrical properties of membranes.J. Membrane Biol. 3:93.CrossRefGoogle Scholar
  2. —— 1971. A theory of ion permeation through membranes with fixed neutral sites.J. Membrane Biol. 4:295.CrossRefGoogle Scholar
  3. —— Wright, E. M. 1971. The mechanism of cation permeation in rabbit gallbladder: dilution potentials and biionic potentials.J. Membrane Biol. 4:358.CrossRefGoogle Scholar
  4. —, Hope, A. B. 1969a. Electroosmosis in membranes: Effects of unstirred layers and transport numbers. I. Theory.Biophys. J. 9:700.PubMedGoogle Scholar
  5. Barry, P. H., Hope, A. B. 1969b. Electroosmosis in membranes: Effects of unstirred layers and transport numbers. II. Experimental.Biophys. J. 9:729.PubMedGoogle Scholar
  6. Cass, A., Finkelstein, A., Krespi, V. 1970. The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.J. Gen. Physiol. 56:100.PubMedCrossRefGoogle Scholar
  7. Ciani, S., Eisenman, G., Szabo, G. 1969. A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electrical properties of bilayer membranes.J. Membrane Biol. 1:1.CrossRefGoogle Scholar
  8. Conti, F., Eisenman, G. 1965. The steady-state properties of an ion exchange membrane with fixed sites.Biophys. J. 5:511.PubMedGoogle Scholar
  9. —— 1966. The steady-state properties of an ion exchange membrane with mobile sites.Biophys. J. 6:227.PubMedGoogle Scholar
  10. Coster, H. G. L. 1965. A quantitative analysis of the voltage-current relationships of fixed charge membranes and associated property of ‘punch through’.Biophys. J. 5:669.PubMedGoogle Scholar
  11. Diamond, J. M. 1962. The mechanism of solute transport by the gall-bladder.J. Physiol. 161:474.PubMedGoogle Scholar
  12. —, Harrison, S. C. 1966. The effect of membrane fixed charges on diffusion potentials and streaming potentials.J. Physiol. 183:37.PubMedGoogle Scholar
  13. —, Wright, E. M. 1969. Biological membranes: The physical basis of ion and nonelectrolyte selectivity.Ann. Rev. Physiol. 31:581.CrossRefGoogle Scholar
  14. Doremus, R. H. 1967. Diffusion potentials in glass.In: Glass Electrodes for Hydrogen and Other Cations. G. Eisenman, editors. p. 101. Dekker, New York.Google Scholar
  15. Eisenman, G. 1962. Cation selective glass electrodes and their mode of operation.Biophys. J. 2:pt. 2, 259.PubMedGoogle Scholar
  16. — 1965. Some elementary factors involved in specific ion permeation. Proc. xxiii Internat. Congress Physiol. Sci. Tokyo, p. 489. Excerpta Med. Found., Amsterdam.Google Scholar
  17. — 1967. The origin of the glass electrode potential.In: Glass Electrodes for Hydrogen and Other Cations. G. Eisenman, editor. p. 133. Dekker, New York.Google Scholar
  18. —, Sandblom, J. P., Walker, J. L. 1967. Membrane structure and ion permeation.Science 155:965.Google Scholar
  19. Finkelstein, A., Cass, A. 1968. Permeability and electrical properties of thin lipid membranes.J. Gen. Physiol. 52:145s.CrossRefGoogle Scholar
  20. Liberman, E. A., Topaly, V. P. 1968. Selective transport of ions through bimolecular phospholipid membranes.Biochim. Biophys. Acta 163:125.PubMedCrossRefGoogle Scholar
  21. Meyer, K. H., Sievers, J. F. 1936. La perméabilité des membranes. I. Theorie de la perméabilité ionique.Helv. Chim. Acta 19:649.CrossRefGoogle Scholar
  22. Neumcke, B., Läuger, P. 1969. Nonlinear electrical effects in lipid membranes. II. Integration of the generalised Nernst-Planck equations.Biophys. J. 9:1160.PubMedGoogle Scholar
  23. Sandblom, J., Eisenman, G., Walker, J. L. 1967. Electrical phenomena associated with transport of ions and ion pairs in liquid ion-exchange membranes. II. Nonzero current properties.J. Phys. Chem. 71:3871.CrossRefGoogle Scholar
  24. Schultz, S. G., Curran, P. F., Wright, E. M. 1967. Interpretation of the hexose-dependent electrical potential differences in small intestine.Nature 214:509.PubMedCrossRefGoogle Scholar
  25. Smulders, A. P. 1970. The Permeability of the Gall-Bladder to Non-Electrolytes. Ph. D. Dissertation, University of California at Los Angeles.Google Scholar
  26. Szabo, G., Eisenman, G., Ciani, S. 1969. The effects of macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes.J. Membrane Biol. 1:346.CrossRefGoogle Scholar
  27. Teorell, T. 1953. Transport processes and electrical phenomena in ionic membranes.Prog. Biophys. Biophys. Chem. 3:305.Google Scholar
  28. Thompson, T. E., Henn, F. A. 1970. Experimental phospholipid model membranes.In: Membranes of Mitochondria and Chloroplasts. E. Racker, editor. p. 25. Van Nostrand Reinhold, New York.Google Scholar
  29. Walker, J. L., Eisenman, G. 1966. A test of the theory of the steady state properties of an ion exchange membrane with mobile sites and dissociated counterions.Biophys. J. 6:513.CrossRefPubMedGoogle Scholar
  30. Wedner, H. J., Diamond, J. M. 1969. Contributions of unstirred-layer effects to apparent electrokinetic phenomena in the gallbladder.J. Membrane Biol. 1:92.CrossRefGoogle Scholar
  31. Wheeler, H. O. 1963. Transport of electrolytes and water across wall of rabbit gall bladder.Amer. J. Physiol. 205:427.PubMedGoogle Scholar
  32. Wright, E. M., Diamond, J. M. 1968. Effects of pH and polyvalent cations on the selective permeability of gall-bladder epithelium to monovalent ions.Biochim. Biophys. Acta 163:57.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1971

Authors and Affiliations

  • Ernest M. Wright
    • 1
  • Peter H. Barry
    • 1
  • Jared M. Diamond
    • 1
  1. 1.Department of PhysiologyUniversity of California Medical CenterLos Angeles

Personalised recommendations