Advertisement

The Journal of Membrane Biology

, Volume 4, Issue 1, pp 295–330 | Cite as

A theory of ion permeation through membranes with fixed neutral sites

  • Peter H. Barry
  • Jared M. Diamond
Article

Summary

Some model membranes and biological membranes behave as if ion permeation were controlled by fixed neutral sites, i.e., by groups that are polar but lack net charge. By solving the boundary conditions and Nernst-Planck flux equations, this paper derives the expected properties of four types of membranes with fixed neutral sites: model 1, a membrane thick enough that microscopic electroneutrality is obeyed; model 2, same as model 1 but with a free-solution shunt in parallel; model 3, a membrane thin enough that microscopic electroneutrality is violated; and model 4, same as model 3 but with a free-solution shunt in parallel. The conductance-concentration relation and the current-voltage relation in symmetrical solutions are approximately linear for all four models. Partial ionic conductances are independent of each other for a thin membrane but not for a thick membrane. Sets of permeability ratios derived from conductances, dilution potentials, or biionic potentials agree with each other in a thin membrane but not in a thick membrane. The current-voltage relation in asymmetrical single-salt solutions is linear for a thick membrane but nonlinear for a thin membrane. Examples of potential and concentration profiles in a thin membrane are calculated to illustrate the meaning of space charge and the electroneutrality condition. The experimentally determined properties (by A. Cass, A. Finkelstein & V. Krespi) of thin lipid membranes containing “pores” of the anion-selective antibiotic nystatin are in reasonable agreement with model 3. Tests are suggested for deciding if a membrane of unknown structure has neutral sites, whether it is thick or thin, and whether the sites are fixed or mobile.

Keywords

Membrane Thickness Debye Length Thin Membrane Permeability Ratio Membrane Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreoli, T. E., Dennis, V. W., Weigl, A. M. 1969. The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes.J. Gen. Physiol. 53:133.PubMedCrossRefGoogle Scholar
  2. Barry, P. H., Diamond, J. M. 1970. Junction potentials, electrode standard potentials, and other problems in interpreting electrical properties of membranes.J. Membrane Biol. 3:93.CrossRefGoogle Scholar
  3. ——, Wright, E. M., 1971. The mechanism of cation permeation in rabbit gallbladder: Dilution potentials and biionic potentials.J. Membrane Biol. 4:358.CrossRefGoogle Scholar
  4. —, Hope, A. B. 1969a. Electroosmosis in membranes: effects of unstirred layers and transport numbers. I. Theory.Biophys. J. 9:700.PubMedGoogle Scholar
  5. —— 1969b. Electroosmosis in membranes: effects of unstirred layers and transport numbers. II. Experimental.Biophys. J. 9:729.PubMedGoogle Scholar
  6. Cass, A., Finkelstein, A., Krespi, V. 1970. The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.J. Gen. Physiol. 56:100.PubMedCrossRefGoogle Scholar
  7. Ciani, S., Eisenman, G., Szabo, G. 1969. A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electrical properties of bilayer membranes.J. Membrane Biol. 1:1.CrossRefGoogle Scholar
  8. Conti, F., Eisenman, G. 1965. The steady-state properties of an ion exchange membrane with fixed sites.Biophys. J. 5:511.PubMedGoogle Scholar
  9. —— 1966. The steady-state properties of an ion exchange membrane with mobile sites.Biophys. J. 6:227.PubMedGoogle Scholar
  10. Diamond, J. M., Wright, E. M. 1969. Biological membranes: the physical basis of ion and nonelectrolyte selectivity.Ann. Rev. Physiol. 31:581.CrossRefGoogle Scholar
  11. Doremus, R. H. 1969. Ion exchange in glasses.In: Ion Exchange, vol. 2. J. A. Marinsky, editor. p. 1. Dekker, New York.Google Scholar
  12. Eisenman, G. 1962. Cation selective glass electrodes and their mode of operation.Biophys. J. 2:259.PubMedGoogle Scholar
  13. Eisenman, G. 1969. Theory of membrane electrode potentials: an examination of the parameters determining the selectivity of solid and liquid ion exchangers and of neutral ionsequestering molecules.In: Ion-Selective Electrodes. R. A. Durst, editor. p. 1. National Bureau of Standards Special Publication 314, Washington, D.C.Google Scholar
  14. —, Ciani, S., Szabo, G. 1968. Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions.Fed. Proc. 27:1289.PubMedGoogle Scholar
  15. Finkelstein, A., Cass, A. 1968. Permeability and electrical properties of thin lipid membranes.J. Gen. Physiol. 52:145s.CrossRefGoogle Scholar
  16. Garrels, R. M., Christ, C. L. 1965. Solutions, Minerals, and Equilibria. Harper and Row, New York.Google Scholar
  17. Hagiwara, S., Toyama, K., Hayashi, H. 1971. Mechanisms of anion and cation permeation in the resting membrane of a barnacle muscle fiber. Submitted to J. Gen. Physiol.Google Scholar
  18. Holz, R., Finkelstein, A. 1970. The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.J. Gen. Physiol. 56:125.PubMedCrossRefGoogle Scholar
  19. Ince, E. L. 1956. Integration of Ordinary Differential Equations. Oliver and Boyd, Edinburgh.Google Scholar
  20. Mac Innes, D. A. 1961. The Principles of Electrochemistry. Dover Publications, New York.Google Scholar
  21. McLaughlin, S. G. A., Szabo, G., Eisenman, G., Ciani, S. 1970a. The effects of a cyclic polyether on the electrical properties of phospholipid bilayer membranes.Biophys. J. 10:96a.Google Scholar
  22. ———— 1970b. The effects of surface charge on the conductance of phospholipid membranes.Proc. Nat. Acad. Sci. 67:1268.PubMedCrossRefGoogle Scholar
  23. Neumcke, B., Läuger, P. 1970. Space charge-limited conductance in lipid bilayer membranes.J. Membrane Biol. 3:54.CrossRefGoogle Scholar
  24. Peck, E. R. 1953. Electricity and Magnetism. McGraw-Hill, New York.Google Scholar
  25. Pressman, B. C. 1968. Ionophorous antibiotics as models for biological transport.Fed. Proc. 27:1283.PubMedGoogle Scholar
  26. Szabo, G., Eisenman, G., Ciani, S. 1969. The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes.J. Membrane Biol. 1:346.CrossRefGoogle Scholar
  27. Teorell, T. 1953. Transport processes and electrical phenomena in ionic membranes.Prog. Biophys. Biophys. Chem. 3:305.Google Scholar
  28. Tosteson, D. C. 1968. Effect of macrocyclic compounds on the ionic permeability of artificial and natural membranes.Fed. Proc. 27:1269.PubMedGoogle Scholar
  29. Walz, D., Bamberg, E., Läuger, P. 1969. Nonlinear electrical effects in lipid bilayer membranes. I. Ion injection.Biophys. J. 9:1150.PubMedCrossRefGoogle Scholar
  30. Wedner, H. J., Diamond, J. M. 1969. Contributions of unstirred-layer effects to apparent electrokinetic phenomena in the gallbladder.J. Membrane Biol. 1:92.CrossRefGoogle Scholar
  31. Wright, E. M., Barry, P. H., Diamond, J. M. 1971. The mechanism of cation permeation in rabbit gallbladder: Conductances, the current-voltage relation, the concentration dependence of anion-cation discrimination, and the calcium competition effect.J. Membrane Biol. 4:331.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1971

Authors and Affiliations

  • Peter H. Barry
    • 1
  • Jared M. Diamond
    • 1
  1. 1.Department of PhysiologyUniversity of California Medical CenterLos Angeles

Personalised recommendations