Medical and Biological Engineering and Computing

, Volume 43, Issue 6, pp 783–792 | Cite as

Influence of electrophysiological heterogeneity on electrical stimulation in healthy and failing human hearts

  • I. M. Graf
  • G. Seemann
  • D. L. Weiß
  • O. Dössel


The application of strong electrical stimuli is a common method used for terminating irregular cardiac behaviour. The study presents the influence of electrophysiological heterogeneity on the response of human hearts to electrical stimulation. The human electrophysiology was simulated using the ten Tusscher-Noble-Noble-Panfilov cell model. The anisotropic propagation of depolarisation in three-dimensional virtual myocardial preparations was calculated using bidomain equations. The research was carried out on different types of virtual cardiac wedge. The selection of the modelling parameters emphasises the influence of cellular electrophysiology on the response of the human myocardium to electrical stimulation. The simulations were initially performed on a virtual cardiac control model characterised by electrophysiological homogeneity. The second preparation incorporated the transmural electrophysiological heterogeneity characteristic of the healthy human heart. In the third model type, the normal electrophysiological heterogeneity was modified by the conditions of heart failure. The main currents responsible for repolarisation (Ito, IKs and IKl) were reduced by 25%. Successively, [Na+]i was increased by the regulation of the Na+−Ca2+ exchange function, and fibrosis was represented by decreasing electrical conductivity. Various electrical stimulation configurations were used to investigate the differences in the responses of the three different models. Monophasic and biphasic electrical stimuli were applied through rectangular paddles and needle electrodes. A whole systolic period was simulated. The distribution of the transmembrane voltage indicated that the modification of electrophysiological heterogeneity induced drastic changes during the repolarisation phase. The results illustrated that each of the heart failure conditions amplifies the modification of the response of the myocardium to electrical stimulation. Therefore a theoretical model of the failing human heart must incorporate all the characteristic features.


Simulation Electrophysiological heterogeneity Virual human left ventricle Healthy and failing heart Electrical stimulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akar, F. G., andRosenbaum, D. S. (2003): ‘Transmural electrophysiological heterogeneities underlying arrhythmogenesis in heart failure’,Circ. Res.,93, pp. 638–645CrossRefGoogle Scholar
  2. Al-Khadra, A., Nikolski, V., andEfimov, I. R. (2000): ‘The Role of electroporation in defibrillation’Circ. Res.,87, pp. 797–804Google Scholar
  3. Aliev, R. R., andPanfilov A. V. (1995): ‘Multiple responses at the boundaries of vulnerability window in the BZ reaction’,Phys. Rev. E.,52, pp. 2287–2293CrossRefGoogle Scholar
  4. Antzelevitch, C., andSicouri, S. (1994): ‘Clinical relevance of cardiac arrhythmias generated by afterdepolarisations: Role of M-cells in the generation of U waves, triggered activity and torsade de pointes’,J. Am. Coll. Cardiol.,23, pp. 259–277CrossRefGoogle Scholar
  5. Carpenter, J., Rea, T. D., Murraya, J. A., Kudenchuk, P. J., andEisenberg, M. S. (2003): ‘Defibrillation waveform and post-shock rhythm in out-hospital ventricular fibrillation cardiac arrest’,Resuscitation,59, pp. 189–196CrossRefGoogle Scholar
  6. Clayton, R. H., andHolden, A. V. (2005): ‘Dispersion of cardiac action potential duration and the initiation of re-entry: A computational study’,BioMed. Eng.,4Google Scholar
  7. De Mello, W. C. (1975): ‘Effect of intracellular injection of calcium and strontium on cell communication in the heart’,J. Physiol.,250, pp. 231–245Google Scholar
  8. Factor, S. M., Sonnenblick, E. H., andKirk, E. S., (1978): ‘The histologic border zone of acute myocardial infraction-islands or peninsulas?’,Am. J. Pathol.,92, pp. 111–124Google Scholar
  9. Furukawa, T., Myerburg, R. J., Furukawa, N., Bassett, A. L., andKimura, S. (1990): ‘Differences in transient outward currents of feline endocardial and epicardial myocytes’,Circ. Res.,67, pp. 1287–1291Google Scholar
  10. Heddaya, A., andPark, K. (1994): ‘Mapping parallel iterative algorithms into workstation networks’,Technical Report BU CS 94 003, Boston, Massachusettes02215, pp. 135–142Google Scholar
  11. Henriquez, C. S., Muzikant, A. L., andSmoak, C. K. (1996): ‘Anisotropy, fiber curvature and bath loading effects on activation in thin and thick cardiac tissue preparations: simulations in a three-dimensional bidomain model’,J. Cardiovasc. Electrophysiol.,7–5, pp. 424–444Google Scholar
  12. Hooks, D. A., Tomlinson, K. A., Marsden, S. G., LeGrice, I. J., Smaill, B. H., Pullman, A. J., andHunter, P. J. (2002): ‘Cardiac microstructures: implications for electrical propagation and defibrillation in the heart’,Circ. Research,92–331Google Scholar
  13. Kaab, S., Nuss, H. B., Chiamvimonvat, N., O'Rourke, B., Pak, P. H., Kass, D. A., Marban, E., andTomaselli, G. F. (1996): ‘Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure’,Circ. Res.,78, pp. 262–273Google Scholar
  14. Li, G. R., Lau, C. P., Ducharme, A., Tardif, J. C., andNattel, S. (2002): ‘Transmural action potential and ionic current remodelling in ventricles of failing canine hearts’,J. Physiol. Heart Circ. Physiol.,283–3, pp. H1031-H1041Google Scholar
  15. Maurer, P., andWeingart, R. (1987): ‘Cell pairs isolated from adult guinea pig and rat hearts: effects of [Ca2+]i on nexal membrane resistance’,Pflügers Arch.,409, pp. 394–402CrossRefGoogle Scholar
  16. Näbauer, M., Beuckelmann, D. J., andErdmann, E. (1993): ‘Characteristics of transient outward current in human ventricular myocytes from patients with terminal heart failure’,Circ. Res.73, pp. 386–394Google Scholar
  17. Peters, N. S., Green, C. R., Poole-Wilson, P. A., andSevers, N. J. (1996): ‘Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts’,Circulation,88, pp. 864–875.Google Scholar
  18. Roth, B. J. (2000): ‘Influence of a perfusing bath on the foot of the cardiac action potential’,Circ. Res.,86Google Scholar
  19. Sachse, F. B., Seemann, G., Chaisaowong, K., andWeiß, D. L. (2003): ‘Quantitative reconstruction of cardiac electromechanics in human myocardium: Assembly of electrophysiological and tension generation models’,J. Cardiovasc. Electrophysiol.,14–S10, pp. S210-S218CrossRefGoogle Scholar
  20. Shimizu, W., andAntzelevitch, C. (1997): ‘Sodium channel block with mexiletine is effective in reducing dispersion of repolarisation and preventing torsade de pointes in LQT2 and LQT3 models of the long-QT syndrome’,Circ.,96, pp. 2038–2047Google Scholar
  21. Sommer, J. R. andJennings, R. B. (1992): ‘Ultrastructure of cardiac muscle’ in Raven Press, Ltd.: ‘The heart and cardiovascular system end 2’, (Raven press, Ltd, 1992), chap. 1, pp. 3–50Google Scholar
  22. Streeter, D. D. (1979): ‘Gross morphologyand fiber geometry of the heart’, in Bethesda, B (Ed): ‘Handbook of physiology: the cardiovascular system, vol. I’ (American Physiology Society, 1979) pp. 61–112Google Scholar
  23. Ten Tusscher, K. H. W. J., Noble, D., Noble, P. J., andPanfilov, A. V. (2004): ‘A model for human ventricular tissue’,Am. J. Physiol.,286, pp. H1573-H1589Google Scholar
  24. Volders, P. G., Sipido, K. R., Carmeliet, E., Spatjens, R. L., Wellens, H. J., andVos, M. A. (1999): ‘Repolarizing K+ currents ITO1,-and IKS are larger in right than left canine ventricular myocardium’,Circ.,99, pp. 206–210Google Scholar
  25. Wang, H. S., andCohen, I. S. (2003): ‘Calcium channel heterogeneity in canine left ventricular myocytes’,J. Physiol.,547, pp. 825–833CrossRefGoogle Scholar
  26. Weber, C. R., Piacentino, V., Houser, S. R., andBers, D. M., (2003): ‘Dynamic regulation of sodium/calcium exchange function in human heart failure’,Circulation,108, pp. 2224–2229CrossRefGoogle Scholar

Copyright information

© IFMBE 2005

Authors and Affiliations

  • I. M. Graf
    • 1
  • G. Seemann
    • 1
  • D. L. Weiß
    • 1
  • O. Dössel
    • 1
  1. 1.Institute of Biomedical EngineeringUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations