Advertisement

Photon production at c.m. energies of 200 and 900 GeV

  • UA 5 Collaboration
  • R. E. Ansorge
  • B. Åsman
  • L. Burow
  • P. Carlson
  • R. S. De Wolf
  • B. Eckart
  • G. Ekspong
  • C. Fuglesang
  • J. Gaudaen
  • C. Geich-Gimbel
  • B. Holl
  • K. Jon-And
  • F. Lotse
  • N. Manthos
  • D. J. Munday
  • W. Pelzer
  • J. G. Rushbrooke
  • F. Triantis
  • L. Van hamme
  • C. Walck
  • C. P. Ward
  • D. R. Ward
  • C. J. S. Webber
  • T. O. White
  • G. Wilquet
  • N. Yamdagni
Article

Abstract

We present data on photon production in non single-diffractivep \(\bar p\)-collisions at c.m. energies of 200 and 900 GeV. Besides the general properties of photon production, i.e. pseudorapidity distribution and average multiplicity, we also investigate photon-charged two-particle pseudorapidity and multiplicity correlations. We find for the average number of photons in non single-diffractivep \(\bar p\)-collisions 22.2±1.4±2.0 at 200 GeV and 41.4±2.1±3.5 at 900 GeV, where the first error is statistical and the second systematic. The analysis of photon-charged particle multiplicity correlations reveals strong positive correlations between the average number of photons and the number of simultaneously produced charged particles, as expected from FNAL and ISR studies and from our result at 546 GeV. We obtain for the correlation slope 0.95±0.08±0.11 at 200 GeV and 1.09±0.09±0.13 at 900 GeV (first error is statistical and the second systematic). The investigation of photon-charged two-particle pseudorapidity correlations shows that these correlations are of short range and compatible with the observed charged two-particle pseudorapidity correlations. These correlations and the results for the average number of photons as a function of the produced number of charged particles favour the conclusion that photon sources other than π0 s contribute significantly to the observed photon yield in non single-diffractivep \(\bar p\)-collisions. For example, if all photons are assumed to come from π0 s and η mesons, a η/π0 ratio of about 20% is inferred.

Keywords

Charged Particle Collider Energy Photon Production Particle Multiplicity Pseudorapidity Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    UA 5 Coll. G.J. Alner et al.: Phys. Rep. 154 (1987) 247CrossRefADSGoogle Scholar
  2. 2.
    UA 5 Coll. G.J. Alner et al.: Z. Phys. C — Particles and Fields 32 (1986) 153CrossRefGoogle Scholar
  3. 3.
    UA 5 Coll. G.J. Alner et al.: Z. Phys. C — Particles and Fields 33 (1986) 1CrossRefGoogle Scholar
  4. 4.
    UA 5 Coll. R.E. Ansorge et al.: Z. Phys. C — Particles and Fields 37 (1988) 191CrossRefGoogle Scholar
  5. 5.
    C.M.G. Lattes et al.: Phys. Rep. 65 (1980) 151; M. Tamada: Nouvo Cimento 41 B (1977) 245; A.S. Borisov et al.: Phys. Lett. 190 B (1987) 226CrossRefADSGoogle Scholar
  6. 6.
    UA 5 Coll. G.J. Alner et al.: Phys. Lett. 180 B (1986) 415ADSGoogle Scholar
  7. 7.
    B. Eckart: Ph. D. Thesis, University of Bonn, BONN IR-88-21 (1988)Google Scholar
  8. 8.
    UA 5 Coll. K. Alpgård et al.: Phys. Lett. 115 B (1982) 71ADSGoogle Scholar
  9. 9.
    Th. Müller: Ph. D. Thesis, University of Bonn, BONN IR-83-21 (1983)Google Scholar
  10. 10.
    L. Burow: Ph. D. Thesis, University of Bonn, BONN IR-87-25 (1987)Google Scholar
  11. 11.
    R.S. De Wolf: Ph. D. Thesis, University of Cambridge (1986)Google Scholar
  12. 12.
    W. Pelzer: Diploma Thesis, University of Bonn, BONN IR-85-39 (1985)Google Scholar
  13. 13.
    C.J.S. Webber: Ph. D. Thesis, University of Cambridge (1988)Google Scholar
  14. 14.
    B. Holl: Ph. D. Thesis, University of Bonn, BONN IR-88-62 (1988)Google Scholar
  15. 15.
    UA 5 Coll. G.J. Alner et al.: Nucl. Phys. B 291 (1987) 445CrossRefADSGoogle Scholar
  16. 16.
    H. Albrecht: Ph. D. Thesis, University of Heidelberg (1978)Google Scholar
  17. 17.
    M. Boratov et al.: Nucl. Phys. B 111 (1976) 529CrossRefADSGoogle Scholar
  18. 18.
    J.J. Dumont et al.: Z. Phys. C — Particles and Fields 13 (1982) 1CrossRefGoogle Scholar
  19. 19.
    M. Alston-Garnjost et al.: Phys. Rev. Lett. 35 (1975) 142CrossRefADSGoogle Scholar
  20. 20.
    J.W. Chapman et al.: Phys. Lett. B 47 (1973) 465CrossRefADSGoogle Scholar
  21. 21.
    K. Jaeger et al.: Phys. Rev. D 11 (1975) 2405CrossRefADSGoogle Scholar
  22. 22.
    T. Kafka et al.: Phys. Rev. D 19 (1975) 76CrossRefADSGoogle Scholar
  23. 23.
    F.T. Dao et al.: Phys. Rev. Lett. 30 (1973) 1151CrossRefADSGoogle Scholar
  24. 24.
    A. Sheng et al.: Phys. Rev. D 11 (1975) 1733CrossRefADSGoogle Scholar
  25. 25.
    R.D. Kass et al.: Phys. Rev. D 20 (1979) 605CrossRefADSGoogle Scholar
  26. 26.
    N. Arata: Rio de Janeiro preprint CBPF-UF002/83 (1983); N. Arata: Nucl. Phys. B 211 (1983) 189Google Scholar
  27. 27.
    Y. Takahashi: private communicationGoogle Scholar
  28. 28.
    UA 5 Coll. G.J. Alner et al.: Phys. Lett. 167B (1986) 476; UA 5 Coll. R.E. Ansorge et al.: Charged particle multiplicity distribution at 200 GeV, and 900 GeV c.m. energy. Z. Phys. C — Particles and Fields to appear (1989)ADSGoogle Scholar
  29. 29.
    V.V. Ammosov et al.: Phys. Lett. 42B (1972) 519ADSGoogle Scholar
  30. 30.
    W.M. Morse et al.: Phys. Rev. D 15 (1977) 66CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    C. Bromberg et al.: Phys. Rev. Lett. 31 (1973) 1563CrossRefADSGoogle Scholar
  32. 32.
    S. Barish et al.: Phys. Rev. D 9 (1974) 2689CrossRefADSGoogle Scholar
  33. 33.
    A. Firestone et al.: Phys. Rev. D 10 (1974) 2080CrossRefADSGoogle Scholar
  34. 34.
    M. Aguilar-Benitez et al.: Review of particle properties. Phys. Lett. 170 B (1986)Google Scholar
  35. 35.
    G. Jansco et al.: Nucl. Phys. B 124 (1977) 1CrossRefADSGoogle Scholar
  36. 36.
    E.L. Berger et al.: Phys. Rev. D 7 (1973) 1412CrossRefADSGoogle Scholar
  37. 37.
    D. Drijard, S. Pokorsky: Phys. Lett. 43 B (1973) 509ADSGoogle Scholar
  38. 38.
    D. Horn, A. Schwimmer: Nucl. Phys. B 52 (1973) 627CrossRefADSGoogle Scholar
  39. 39.
    P. Grassberger, H.I. Miettinen: Nucl. Phys. B 82 (1974) 26; P. Grassberger, H.I. Miettinen Nucl. Phys. B 89 (1975) 109CrossRefADSGoogle Scholar
  40. 40.
    B. Åsman: Ph. D. Thesis, University of Stockholm (1986)Google Scholar
  41. 41.
    UA 5 Coll. G.J. Alner et al.: Phys. Lett. 160B (1985) 199ADSGoogle Scholar
  42. 42.
    B. Holl, UA 5 internal Note: A simple cluster model for two-particle pseudorapidity correlations.Google Scholar
  43. 43.
    A. Breakstone et al.: Phys. Rev. D 30 (1984) 528CrossRefADSGoogle Scholar
  44. 44.
    A. Bialas: 4th International Symposium on Multiparticle Hadrodynamics, Pavia, 1973, p. 93Google Scholar
  45. 45.
    S.R. Amendolia et al.: Phys. Lett. 48 B (1974) 359ADSGoogle Scholar
  46. 46.
    H. Dibon et al.: Phys. Lett. 44 B (1975) 313ADSGoogle Scholar
  47. 47.
    E.L. Berger: Nucl. Phys. B 85 (1975) 61CrossRefADSGoogle Scholar
  48. 48.
    J. Benecke, J. Kühn: Nucl. Phys. B 140 (1978) 179CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • UA 5 Collaboration
  • R. E. Ansorge
    • 3
  • B. Åsman
    • 5
  • L. Burow
    • 1
  • P. Carlson
    • 5
  • R. S. De Wolf
    • 3
  • B. Eckart
    • 1
  • G. Ekspong
    • 5
  • C. Fuglesang
    • 5
  • J. Gaudaen
    • 2
  • C. Geich-Gimbel
    • 1
  • B. Holl
    • 1
  • K. Jon-And
    • 5
  • F. Lotse
    • 5
  • N. Manthos
    • 4
  • D. J. Munday
    • 3
  • W. Pelzer
    • 1
  • J. G. Rushbrooke
    • 3
  • F. Triantis
    • 4
  • L. Van hamme
    • 2
  • C. Walck
    • 5
  • C. P. Ward
    • 3
  • D. R. Ward
    • 3
  • C. J. S. Webber
    • 3
  • T. O. White
    • 3
  • G. Wilquet
    • 2
  • N. Yamdagni
    • 5
  1. 1.Physikalisches Institut der UniversitätBonnFederal Republic of Germany
  2. 2.Inter-University Institute for High Energies (ULB-VUB)BrusselsBelgium
  3. 3.Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUK
  4. 4.CERNGeneva 23Switzerland
  5. 5.Institute of PhysicsUniversity of StockholmStockholmSweden

Personalised recommendations