Ionics

, Volume 11, Issue 3–4, pp 306–314 | Cite as

Nanoionics of advanced superionic conductors

  • A. L. Despotuli
  • A. V. Andreeva
  • B. Rambabu
Article

Abstract

New scientific direction — nanoionics of advanced superionic conductors (ASICs) was proposed. Nanosystems of solid state ionics were divided onto two classes differing by an opposite influence of crystal structure defects on the ionic conductivity σi (energy activationE): I) nanosystems on the base compounds with initial small σi (large values ofE); and II) nanosystems of ASICs (nano-ASICs) withE ≈0.1 eV.

The fundamental challenge of nanoionics as the conservation of fast ion transport (FIT) in nano-ASICs on the level of bulk crystal was first recognized and for the providing of FIT in nano-ASICs the conception of structure-ordered (coherent) ASIC//indifferent electrode (IE) heteroboundaries was proposed. Nano-ASIC characteristic parameterP=dQ (d is the thickness of ASIC layer with the defect crystal structure at the heteroboundary, and λQ is the screening length of charge for mobile ions of the bulk of ASIC) was introduced. The criterion for a conservation of FIT in nano-ASIC isP≈1. It was shown that at the equilibrium conditions the contact potentialsV at the ASIC//IE coherent heterojunctions in nano-ASICs areV«kBT/e. Interface engineering approach “from advanced materials to advanced devices” was proposed as fundamentals for the development of applied nanoionics. The possibility for creation on the base of ASIC//IE coherent heterojunctions of the efficient energy and power devices (sensors and supercapacitors with specific capacity ≈10−4 F/cm2 and maximal frequencies 109–100 Hz,) suited for micro(nano)electronics, microsystem technology and 5 Gbit DRAM was pointed out.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C.C. Liang, J. Electrochem. Soc.120, 1289 (1973).Google Scholar
  2. [2]
    K. Shahi, J.B. Wagner, Appl. Phys. Lett.37, 757 (1980).CrossRefGoogle Scholar
  3. [3]
    J. Maier, Ber. Bunsenges. Phys. Chem.88, 1057 (1984).Google Scholar
  4. [4]
    D.O. Raleigh, H.R. Crowe, J. Electrochem. Soc.118, 79 (1971).Google Scholar
  5. [5]
    A.L. Despotuli, V.I. Nikolaichik, Solid State Ionics60, 275 (1993).CrossRefGoogle Scholar
  6. [6]
    A.L Despotuli, A.V. Andreeva, e-publication, http://preprint.chemweb.com/physchem/0309001 (2003).Google Scholar
  7. [7]
    B. Owens, J. Power Sources90, 2 (2000).CrossRefGoogle Scholar
  8. [8]
    A.L Despotuli, A.V. Andreeva, Microsystem engineering (Rus)11, 2 (2003).Google Scholar
  9. [9]
    A.L Despotuli, A.V. Andreeva, Microsystem engineering (Rus)12, 2 (2003).Google Scholar
  10. [10]
    A.L. Despotuli, A.V. Andreeva, e-publication, http://preprint.chemweb.com/physchem/0306011 (2003)Google Scholar
  11. [11]
    K.J. Lehovec, J. Chem. Phys.21, 1123 (1953).CrossRefGoogle Scholar
  12. [12]
    S. Chandra, Superionic Solids, North-Holland Publishing Company, 1981, p. 404.Google Scholar
  13. [13]
    A.L. Despotuli, L.A. Despotuli, Phys. Solid State (Rus)39, 1544 (1997).Google Scholar
  14. [14]
    A.L. Despotuli, in: New Trends in Intercalation Compound for Energy Storage. NATO-SCIENCE SERIES. Volume61 (C. Julien et al., Eds.) Kluwer Academic Publishers, Dordrecht-Boston-London, 2002, p. 455.Google Scholar
  15. [15]
    A.L. Despotuli, V.I. Levashov, e-publication, http://preprint.chemweb.com/inorgchem/0208001 (2002).Google Scholar
  16. [16]
    A.L. Despotuli, V.I. Levashov, L.A. Matveeva, Electrochemistry (Rus)39, 526 (2003).Google Scholar
  17. [17]
    P. Keblinski, J. Eggebrecht, D. Wolf, S.R. Phillpot, J. Chem. Phys.113, 282 (2000).CrossRefGoogle Scholar
  18. [18]
    A.A. Volkov, G.V. Kozlov, G.I. Mirzoev, V.G. Goffman, Letters in JETP (Rus)38, 182 (1983).Google Scholar
  19. [19]
    J. Maier, Solid State Ionics86–88, 55 (1996).CrossRefGoogle Scholar
  20. [20]
    J.-S. Lee, St. Adams, J. Maier, Solid State Ionics136–137, 1261 (2000).CrossRefGoogle Scholar
  21. [21]
    J. Maier, Solid State Ionics131, 13 (2000).CrossRefGoogle Scholar
  22. [22]
    J. Maier, Solid State Ionics154–155, 291 (2002).CrossRefGoogle Scholar
  23. [23]
    J. Maier, Solid State Ionics157, 327 (2003).CrossRefGoogle Scholar
  24. [24]
    J. Maier, Solid State Ionics148, 367 (2002).CrossRefGoogle Scholar
  25. [25]
    J. Maier, Z. Phys. Chem.217 (4), 415 (2003).Google Scholar
  26. [26]
    N. Sata, K. Eberman, K. Eberl, J. Maier, Nature408, 946 (2000).CrossRefGoogle Scholar
  27. [27]
    J. Jamnik, J. Maier, Phys. Chem. Chem. Phys.5, 5215 (2003).CrossRefGoogle Scholar
  28. [28]
    A.L. Despotuli, A.A. Shestakov, N.V. Lichkova, Solid State Ionics70/71, 130 (1994).CrossRefGoogle Scholar
  29. [29]
    J.H. Choy, N.G. Park, Y.I. Kim, S.H. Hwang, J. Phys. Chem.99, 7845 (1995).CrossRefGoogle Scholar
  30. [30]
    J.H. Choy, Y.I. Kim, S.J. Hwang, J. Phys. Chem. B102, 9191 (1998).CrossRefGoogle Scholar
  31. [31]
    A.L. Despotuli, A.V. Andreeva, in: Proceeding of International Workshop "Micro Robots, Micro Machines and Micro Systems", Institute for Problems in Mechanics RAS, Moscow, April 24–25, 2003, p. 129.Google Scholar
  32. [32]
    A.L. Despotuli, A.V. Andreeva, in: Book of Abstracts "7th International Meeting Fundamental Challenges of Solid State Ionics", Chernogolovka, June 16–18, 2004, p. 22.Google Scholar
  33. [33]
    I.M. Lifshitz, Y.E. Geguzin, Phys. Solid State (Rus)7, 62 (1965).Google Scholar
  34. [34]
    V.N. Chebotin, L.M. Solov'eva, Electrochemistry (Rus)4, 858 (1968).Google Scholar
  35. [35]
    E.A. Ukshe, N.G. Bukun, Electrochemistry (Rus)26, 1373 (1990).Google Scholar
  36. [36]
    T. Watanabe, Res. Mechanica11, 47 (1984).Google Scholar
  37. [37]
    T. Watanabe, Acta Mater.47, 4171 (1999).CrossRefGoogle Scholar
  38. [38]
    T. Watanabe, in: Book of abstracts "International Conference "Interfaces in advanced materials", Chernogolovka, May 26–30, 2003, p. 2.Google Scholar
  39. [39]
    A.I. Il'in, A.V. Andreeva, B.N. Tolkunov, Mat. Sci. Forum.206, 625 (1996).CrossRefGoogle Scholar
  40. [40]
    O.V. Kononenk, A.V. Andreeva, A.I. Il'in, V.N. Matveev, in: MRS-Proceedings, 2002, p. 574.Google Scholar
  41. [41]
    A.V. Andreeva, N.M. Talijan et al., e-publication, http://preprint.chemweb.com/inorgchem/0302001 (2003).Google Scholar
  42. [42]
    M. Backhaus-Ricoult, M.-F. Trichet, Solid State Ionics150, 143 (2002).CrossRefGoogle Scholar
  43. [43]
    R. Röttger, H. Schmalzried, Solid State Ionics150, 131 (2002).CrossRefGoogle Scholar
  44. [44]
    D.M. Kolb, Surface Science500, 722 (2002).CrossRefGoogle Scholar
  45. [45]
    Zh.I. Alferov, Uspehi Phys. Sci.172, 1068 (2002).CrossRefGoogle Scholar
  46. [46]
    A.V. Andreeva, A.L. Despotuli, in: Book of abstracts "International Conference Interfaces in advanced materials", Chernogolovka, May 26–30, 2003, p. 32.Google Scholar
  47. [47]
    A.L. Despotuli, A.V. Andreeva, in: Book of extending abstracts. International Conference "INTERMATIC-2003", Moscow, June 9–12, 2003, p. 156.Google Scholar
  48. [48]
    A.V. Andreeva, in: Proceeding of 5th Russian Conferene on Physicochemistry of Ultra-Dispersoid System (V.F. Petrunin, Ed.) MEPI, Moscow, 2000, p. 32.Google Scholar
  49. [49]
    A.L. Despotuli, N.V. Lichkova, N.A. Minenkova, S.V. Nosenko, Electrochemistry (Rus)26, 1524 (1990).Google Scholar
  50. [50]
    A.V. Andreeva, Surface: Physics, Chemistry, Mechanics46, 117 (1990).Google Scholar
  51. [51]
    A.V. Andreeva, A.A. Firsova, Preprint of IMT AN USSR, Chernogolovka, 1990, p. 44.Google Scholar
  52. [52]
    A.V. Andreeva, Mat. Sci. Forum69, 111 (1991).Google Scholar
  53. [53]
    A.V. Andreeva, D.L. Meiler, Crystal properties and preparation35—38, 358 (1991).Google Scholar
  54. [54]
    T. Ochs, S. Köstlmeier, C. Elsässer, Integr. Ferroelectrics32, 959 (2000).Google Scholar
  55. [55]
    M. Kiguchi, H. Inoue, T. Sasaki et al., Surf. Sci.522, 84 (2003).CrossRefGoogle Scholar
  56. [56]
    S. Bredikhin, T. Hattori, M. Ishigame, Phys. Rev. B50, 2444 (1994).CrossRefGoogle Scholar
  57. [57]
    http://www.skeleton-technologies.comGoogle Scholar
  58. [58]
    P. Bergamo, S. Asgari, H. Wang, D. Maniezzo, L. Yip, R. Hudson, K. Yao, D. Estrin, IEEE Transactions on Mobile Computing3, 211 (2004).CrossRefGoogle Scholar
  59. [59]
    S. Ezhilvalavan, T. Tseng, Materials Chemistry and Physics65, 227 (2000).CrossRefGoogle Scholar
  60. [60]
    R.E. Jones, P. Zurcher, P. Chu et al., Microeletronic Engineering29, 11 (1995).CrossRefGoogle Scholar
  61. [61]
    http://www.iapplianceweb.com/story/oeg20030624 s0046.htmGoogle Scholar

Copyright information

© IfI - Institute for Ionics 2005

Authors and Affiliations

  • A. L. Despotuli
    • 1
  • A. V. Andreeva
    • 1
  • B. Rambabu
    • 1
    • 2
  1. 1.Institute of Microelectronics Technology & High Purity Materials RASMoscow RegionRussia
  2. 2.Southern University and A&M CollegeBaton RougeUSA

Personalised recommendations