Boundary-Layer Meteorology

, Volume 81, Issue 3–4, pp 325–351 | Cite as

A multi-limit formulation for the equilibrium depth of a stably stratified boundary layer

  • Sergej Zilitinkevich
  • Dmitrii V. Mironov


Currently no expression for the equilibrium depth of the turbulent stably-stratified boundary layer is available that accounts for the combined effects of rotation, surface buoyancy flux and static stability in the free flow. Various expressions proposed to date are reviewed in the light of what is meant by the stable boundary layer. Two major definitions are thoroughly discussed. The first emphasises turbulence and specifies the boundary layer as a continuously and vigorously turbulent layer adjacent to the surface. The second specifies the boundary layer in terms of the mean velocity profile, e.g. by the proximity of the actual velocity to the geostrophic velocity. It is shown that the expressions based on the second definition are relevant to the Ekman layer and portray the depth of the turbulence in the intermediate regimes, when the effects of static stability and rotation essentially interfere. Limiting asymptotic regimes dominated by either stratification or rotation are examined using the energy considerations. As a result, a simple equation for the depth of the equilibrium stable boundary layer is developed. It is valid throughout the range of stability conditions and remains in force in the limits of a perfectly neutral layer subjected to rotation and a rotation-free boundary layer dominated by surface buoyancy flux or stable density stratification at its outer edge. Dimensionless coefficients are estimated using data from observations and large-eddy simulations. Well-known and widely used formulae proposed earlier by Zilitinkevich and by Pollard, Rhines and Thompson are shown to be characteristic of the above interference regimes, when the effects of rotation and static stability (due to either surface buoyancy flux, or stratification at the outer edge of the boundary layer) are roughly equally important.

Key words

Stable Boundary Layer Boundary-Layer Depth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. André, J. C. and Mahrt, L.: 1982, ‘The Nocturnal Surface Inversion and Influence of Clear-Air Radiative Cooling’,J. Atmos. Sci. 39, 864–878.CrossRefGoogle Scholar
  2. Andrén, A.: 1995, ‘The Structure of Stably Stratified Atmospheric Boundary Layers. A Large-Eddy Simulation Study’,Quart. J. Roy. Meteorol. Soc. 121, 961–985.CrossRefGoogle Scholar
  3. Andrén, A. and Moeng, C.-H.: 1993, ‘Single-Point Closures in a Neutrally Stratified Boundary Layer’,J. Atmos. Sci. 50, 3366–3379.CrossRefGoogle Scholar
  4. Brost, R. A. and Wyngaard, J. C.: 1978, ‘A Model Study of the Stably Stratified Planetary Boundary Layer’,J. Atmos. Sci. 35, 1427–1440.CrossRefGoogle Scholar
  5. Brown, A. R., Derbyshire, S. H., and Mason, P. J.: 1994, ‘Large-Eddy Simulation of Stable Atmospheric Boundary Layers with a Revised Stochastic Subgrid Model’,Quart. J. Roy. Meteorol. Soc. 120, 1485–1512.CrossRefGoogle Scholar
  6. Businger, J. A. and Arya, S. P. S.: 1974, ‘Heights of The Mixed Layer in the Stably Stratified Planetary Boundary Layer’,Advances in Geophysics, Vol. 18A, Academic Press, pp. 73–92.Google Scholar
  7. Byun, D. W.: 1991, ‘Determination of Similarity Functions of the Resistance Laws for the Planetary Boundary Layer Using Surface-Layer Similarity Functions’,Boundary-Layer Meteorol. 57, 17–48.CrossRefGoogle Scholar
  8. Caldwell, D. R., Van Atta, C. W., and Helland, K. N.: 1972, ‘A Laboratory Study of the Turbulent Ekman Layers’,Geophys. Fluid Dyn. 3, 125–160.Google Scholar
  9. Carruthers, D. J. and Hunt, J. C. R.: 1986, ‘Velocity Fluctuations Near an Interface between a Turbulent Region and a Stably Stratified Layer’,J. Fluid Mech. 165, 475–501.CrossRefGoogle Scholar
  10. Caughey, S. J.: 1982, ‘Observed Characteristics of the Atmospheric Boundary Layer’, in F. T. M. Nieuwstadt and H. van Dop (eds.),Atmospheric Turbulence and Air Pollution Modelling, D. Reidel, Dordrecht, pp. 107–158.Google Scholar
  11. Caughey, S. J., Wyngaard, J. C., and Kaimal, J. C.: 1979, ‘Turbulence in the Evolving Stable Layer’,J. Atmos. Sci. 36, 1041–1052.Google Scholar
  12. Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G., and Troup, A. J.: 1971, ‘The Wangara Experiment: Boundary Layer Data’;. Techn. Pap. No. 19, CSIRO, Division of Meteorological Physics, Aspendale, Australia. 362 pp.Google Scholar
  13. Deardorff, J. W.: 1972, ‘Parameterization of the Planetary Boundary Layer for Use in General Circulation Models’,Mon. Wea. Rev. 100, 93–106.Google Scholar
  14. Derbyshire, S. H.: 1990, ‘Nieuwstadt’s Stable Boundary Layer Revisited’,Quart. J. Roy. Meteorol. Soc. 116, 127–158.CrossRefGoogle Scholar
  15. Derbyshire, S. H.: 1995a, ‘Stable Boundary Layers: Observations, Models and Variability. Part I: Modelling and Measurements’,Boundary-Layer Meteorol. 74, 19–54.CrossRefGoogle Scholar
  16. Derbyshire, S. H.: 1995b, ‘Stable Boundary Layers: Observations, Models and Variability. Part II: Data Analysis and Averaging Effects’,Boundary-Layer Meteorol. 75, 1–24.CrossRefGoogle Scholar
  17. Felzenbaum, A. I.: 1980, ‘Similarity Theory for the Oceanic Upper Layer’,Dokl. AN SSSR 255, 552–556.Google Scholar
  18. Finnigan, J. J., Einaudi, F., and Fua, D.: 1984, ‘The Interaction between an Internal Gravity Wave and Turbulence in the Stably-Stratified Nocturnal Boundary Layer’,J. Atmos. Sci. 41, 2409–2436.CrossRefGoogle Scholar
  19. Garratt, J. R.: 1982, ‘Observations in the Nocturnal Boundary Layer’,Boundary-Layer Meteorol. 22, 21–48.CrossRefGoogle Scholar
  20. Garratt, J. R. and Brost, R. A.: 1981, ‘Radiative Cooling Effects within and above the Nocturnal Boundary Layer’,J. Atmos. Sci. 38, 2730–2746.CrossRefGoogle Scholar
  21. Garwood, R. W.: 1977, ‘An Oceanic Mixed Layer Model Capable of Simulating Cyclic States’,J. Phys. Oceanogr. 7, 455–468.CrossRefGoogle Scholar
  22. Garwood, R. W., Gallacher, P. C., and Muller, P.: 1985, ‘Wind Direction and Equilibrium Mixed Layer Depth: General Theory’,J. Phys. Oceanogr. 15, 1325–1331.CrossRefGoogle Scholar
  23. Garwood, R. W., Muller, P., and Gallacher, P. C.: 1985, ‘Wind Direction and Equilibrium Mixed Layer Depth in the Tropical Pacific Ocean’,J. Phys. Oceanogr. 15, 1332–1338.CrossRefGoogle Scholar
  24. Gill, A. E.: 1967,The Turbulent Ekman Layer, Preprint, Dept. Appl. Math. Theoret. Phys., Cambridge University.Google Scholar
  25. Grant, A. L. M.: 1994, ‘Wind Profiles in the Stable Boundary Layer, and the Effect of Low Relief’,Quart. J. Roy. Meteorol. Soc. 120, 27–46.CrossRefGoogle Scholar
  26. Hinze, J. O.: 1959,Turbulence, McGraw Hill Book Co., 517 pp.Google Scholar
  27. Högström, U.: 1988, ‘Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-Evaluation’,Boundary-Layer Meteorol. 42, 55–78.CrossRefGoogle Scholar
  28. Joffre, S. M.: 1981,The Physics of the Mechanically Driven Atmospheric Boundary Layer as an Example of Air-Sea Ice Interactions, Report No. 20, Dept. Meteorology, University of Helsinki, 75 pp.Google Scholar
  29. Kantha, L. H.: 1977, ‘Note on the Role of Internal Waves in Thermocline Erosion’, in E. B. Kraus (ed.),Modelling and Prediction of the Upper Layers of the Ocean, Pergamon Press, Oxford, pp. 173–177.Google Scholar
  30. Kazanski, A. B., and Monin, A. S.: 1960, ‘On Turbulent Regime above the Atmospheric Surface Layer’,Izv. AN SSSR. Ser. geofiz., No. 1, 165-168.Google Scholar
  31. Kitaigorodskii, S. A.: 1960, ‘On the Computation of the Thickness of the Wind-Mixing Layer in the Ocean’,Izv. AN SSSR. Ser. geofiz., No. 3, 425–431.Google Scholar
  32. Kitaigorodskii, S. A.: 1970,The Physics of Air-Sea Interaction, Gidrometeoizdat, Leningrad, 284 pp. (In Russian. English translation: Israel Progr. Scient. Translation, Jerusalem, 1973, 236 pp.)Google Scholar
  33. Kitaigorodskii, S. A.: 1988, ‘A Note on Similarity Theory for Atmospheric Boundary Layers in the Presence of Background Stable Stratification’,Tellus 40A, 434–438.Google Scholar
  34. Kitaigorodskii, S. A.: 1990, ‘A Note on the Variability of the Heights of Tidal Benthic Boundary Layers’,Geophysica 26, 37–44.Google Scholar
  35. Kitaigorodskii, S. A.: 1992, ‘The Location of Thermal Shelf Fronts and the Variability of the Heights of Tidal Benthic Boundary Layers’,Tellus 44A, 425–433.Google Scholar
  36. Kitaigorodskii, S. A. and Joffre, S. M.: 1988, ‘In Search of Simple Scaling for the Heights of the Stratified Atmospheric Boundary Layer’,Tellus 40A, 419–433.Google Scholar
  37. Kraus, E. B. and Turner, J. C.: 1967, ‘A One-Dimensional Model of the Seasonal Thermocline: Part II. The General Theory and its Consequences’,Tellus 19, 98–106.Google Scholar
  38. Lenschow, D. H., Li, X. S., Zhu, C. J., and Stankov, B. B.: 1988a, ‘The Stably Stratified Boundary Layer over the Great Plains. I. Mean and Turbulence Structure’,Boundary-Layer Meteorol. 42, 95–121.CrossRefGoogle Scholar
  39. Lenschow, D. H., Zhang, S. F., and Stankov, B. B.: 1988b, ‘The Stably Stratified Boundary Layer over the Great Plains. II. Horizontal Variations and Spectra’,Boundary-Layer Meteorol. 42, 123–135.CrossRefGoogle Scholar
  40. Long, R. R.: 1974, ‘Mean Stresses and Velocities in the Neutral, Barotropic Planetary Boundary Layer’,Boundary-Layer Meteorol. 7, 475–487.CrossRefGoogle Scholar
  41. Mahrt, L.: 1981, ‘Modelling the Depth of the Stable Boundary-Layer’,Boundary-Layer Meteorol. 21, 3–19.CrossRefGoogle Scholar
  42. Mahrt, L., Heald, R. C., Lenschow, D. H., Stankov, B. B., and Troen, I.: 1979, ‘An Observational Study of the Structure of the Nocturnal Boundary Layer’,Boundary-Layer Meteorol. 17, 247–264.CrossRefGoogle Scholar
  43. Mason, P. J. and Derbyshire, S. H.: 1990, ‘Large-Eddy Simulation of the Stably Stratified Atmospheric Boundary Layer’,Boundary-Layer Meteorol. 53, 117–162.CrossRefGoogle Scholar
  44. Mason, P. J. and Thomson, D. J.: 1987, ‘Large-Eddy Simulations of the Neutral-Static-Stability Planetary Boundary Layer’,Quart. J. Roy. Meteorol. Soc. 113, 413–443.CrossRefGoogle Scholar
  45. Melgarejo, J. W. and Deardorff, J. W.: 1974, ‘Stability Functions for the Boundary Layer Resistance Laws Based upon Observed Boundary Layer Heights’,J. Atmos. Sci. 31, 1324–1333.CrossRefGoogle Scholar
  46. Melgarejo, J. W. and Deardorff, J. W.: 1975, ‘Revision to “Stability Functions for the Boundary Layer Resistance Laws Based upon Observed Boundary Layer Heights”’,J. Atmos. Sci. 32, 837–839.Google Scholar
  47. Monin, A. S. and Obukhov, A. M.: 1954, ‘Basic Laws of Turbulent Mixing in the Atmospheric Surface Layer’,Trudy Geofiz. Inst. Akad. Nauk SSSR,24(151), 163–187.Google Scholar
  48. Nappo, C. J.: 1991, ‘Sporadic Breakdowns of Stability in the PBL over Simple and Complex Terrain’,Boundary-Layer Meteorol. 54, 69–75.CrossRefGoogle Scholar
  49. Nappo, C. J. and Eckman, R. M.: 1995, ‘Breakdowns of the Nighttime Planetary Boundary Layer over Complex Terrain’, 21st NATO/CCMS International Technical meeting on Air Pollution Modelling and its Application, November 6–10, 1995, Baltimore, MD, USA, AMS, pp. 291–298.Google Scholar
  50. Nieuwstadt, F. T. M.: 1981, ‘The Steady-State Height and Resistance Laws of the Nocturnal Boundary Layer: Theory Compared with Cabauw Observations’,Boundary-Layer Meteorol. 20, 3–17.CrossRefGoogle Scholar
  51. Nieuwstadt, F. T. M.: 1984, ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer’,J. Atmos. Sci. 41, 2202–2216.CrossRefGoogle Scholar
  52. Nieuwstadt, F. T. M.: 1985, ‘A Model for the Stationary, Stable Boundary Layer’, in J. C. R. Hunt (ed.),Turbulence and Diffusion in Stable Environment, Claredon Press, Oxford, pp. 149–179.Google Scholar
  53. Nieuwstadt, F. T. M. and Tennekes, H.: 1981, ‘A Rate Equation for the Nocturnal Boundary-Layer Height’,J. Atmos. Sci. 38, 1418–1428.CrossRefGoogle Scholar
  54. Niiler, P. P.: 1975, ‘Deepening of the Wind-Mixed Layer’,J. Marine Res. 33, 405–422.Google Scholar
  55. Niiler, P. P. and Kraus, E. B.: 1977, ‘One-Dimensional Models of the Upper Ocean’, in E. B. Kraus (ed.),Modelling and Prediction of the Upper Layers of the Ocean, Pergamon Press, Oxford, pp. 143–172.Google Scholar
  56. Overland, J. E. and Davidson, K. L.: 1992, ‘Geostrophic Drag Coefficient over Sea Ice’,Tellus 44A, 54–66.Google Scholar
  57. Phillips, O. M.: 1977, ‘Entrainment’, in E. B. Kraus (ed.), Modelling and Prediction of the Upper Layers of the Ocean, Pergamon Press, Oxford, pp. 92–101.Google Scholar
  58. Pollard, R. T., Rhines, P. B. and Thompson, R. O. R. Y.: 1973, ‘The Deepening of the Wind-Mixed Layer’,Geophys. Fluid Dyn. 3, 381–404.Google Scholar
  59. Rahm, L. and Svensson, U.: 1989, ‘Dispersion in a Stratified Benthic Boundary Layer’,Tellus 41A, 148–161.CrossRefGoogle Scholar
  60. Resnyansky, Yu. D.: 1975, ‘On the Parameterization of the Integral Turbulent Energy Dissipation in the Upper Ocean Quasi-Homogeneous Layer’,Izv. AN SSSR. Fizika Atmosfery i Okeana 11, 726–733.Google Scholar
  61. Richards, K. J.: 1982, ‘Modeling the Benthic Boundary Layer’,J. Phys. Oceanogr. 12, 428–439.CrossRefGoogle Scholar
  62. Rossby, C. G. and Montgomery, R. B.: 1935, ‘The Layer of Frictional Influence in Wind and Ocean Currents’,Pap. Phys. Oceanogr. Meteorol. 3(3), 1–101. (M.I.T. and Woods Hole Oceanogr. Inst.)Google Scholar
  63. Stigebrandt, A.: 1985, ‘A Model of the Seasonal Pycnocline in Rotating Systems with Application to the Baltic Proper’,J. Phys. Oceanogr. 15, 1392–1404.CrossRefGoogle Scholar
  64. Tennekes, H.: 1982, ‘Similarity Relations, Scaling Laws and Spectral Dynamics’, in F. T. M. Nieuwstadt and H. van Dop (eds.),Atmospheric Turbulence and Air Pollution Modelling, D. Reidel, Dordrecht, pp. 37–68.Google Scholar
  65. Thorpe, S. A.: 1973, ‘Turbulence in Stably Stratified Fluids: A Review of Laboratory Experiments’,Boundary-Layer Meteorol. 5, 95–119.CrossRefGoogle Scholar
  66. Townsend, A. A.: 1966, ‘Internal Waves Produced by a Convective Layer’,J. Fluid Mech. 24, 307–319.CrossRefGoogle Scholar
  67. Weatherly, G. L. and Martin, P. J.: 1978, ‘On the Structure and Dynamics of the Oceanic Bottom Boundary Layer’,J. Phys. Oceanogr. 8, 557–570.CrossRefGoogle Scholar
  68. Wyngaard, J. C.: 1983, ‘Lectures on the Planetary Boundary Layer’, in D. K. Lilly and T. Gal-Chen (eds.),Mesoscale Meteorology — Theories, Observations and Models, NATO ASI Series, D. Reidel, Dordrecht, pp. 603–650.Google Scholar
  69. Wyngaard, J. C.: 1988, ‘Structure of the PBL’, in A. Venkatram and J. C. Wyngaard (eds.), Lectures on Air Pollution Modeling, Amer. Meteor. Soc., Boston, pp. 9–61.Google Scholar
  70. Wyngaard, J. C.: 1992, ‘Atmospheric Turbulence’,Annu. Rev. Fluid Mech. 24, 205–233.CrossRefGoogle Scholar
  71. Yamada, T.: 1976, ‘On the Similarity FunctionsA, B, andC of the Planetary Boundary Layer’,J. Atmos. Sci. 33, 781–793.CrossRefGoogle Scholar
  72. Yu, T.-W.: 1978, ‘Determining the Height of the Nocturnal Boundary Layer’,J. Appl. Meteorol. 17, 28–33.CrossRefGoogle Scholar
  73. Zilitinkevich, S. S.: 1972, ‘On the Determination of the Height of the Ekman Boundary Layer’,Boundary-Layer Meteorol. 3, 141–145.CrossRefGoogle Scholar
  74. Zilitinkevich, S. S.: 1975, ‘Resistance Laws and Prediction Equation for the Depth of the Planetary Boundary Layer’,J. Atmos. Sci. 32, 741–752.CrossRefGoogle Scholar
  75. Zilitinkevich, S. S.: 1989, ‘Velocity Profiles, Resistance Law and Dissipation Rate of Mean Flow Kinetic Energy in a Neutrally and Stably Stratified Planetary Boundary Layer’,Boundary-Layer Meteorol. 46, 367–387.CrossRefGoogle Scholar
  76. Zilitinkevich, S. S. and Mironov, D. V.: 1992, ‘Theoretical Model of the Thermocline in a Freshwater Basin’,J. Phys. Oceanogr. 22, 988–996.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Sergej Zilitinkevich
    • 1
    • 2
  • Dmitrii V. Mironov
    • 1
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.Max Planck Institute for MeteorologyHamburgGermany

Personalised recommendations