Journal of Nonlinear Science

, Volume 3, Issue 1, pp 349–392

Coupled nonlinear oscillators and the symmetries of animal gaits

  • J. J. Collins
  • I. N. Stewart
Article

Summary

Animal locomotion typically employs several distinct periodic patterns of leg movements, known as gaits. It has long been observed that most gaits possess a degree of symmetry. Our aim is to draw attention to some remarkable parallels between the generalities of coupled nonlinear oscillators and the observed symmetries of gaits, and to describe how this observation might impose constraints on the general structure of the neural circuits, i.e. central pattern generators, that control locomotion. We compare the symmetries of gaits with the symmetry-breaking oscillation patterns that should be expected in various networks of symmetrically coupled nonlinear oscillators. We discuss the possibility that transitions between gaits may be modeled as symmetry-breaking bifurcations of such oscillator networks. The emphasis is on general model-independent features of such networks, rather than on specific models. Each type of network generates a characteristic set of gait symmetries, so our results may be interpreted as an analysis of the general structure required of a central pattern generator in order to produce the types of gait observed in the natural world. The approach leads to natural hierarchies of gaits, ordered by symmetry, and to natural sequences of gait bifurcations. We briefly discuss how the ideas could be extended to hexapodal gaits.

Key words

central pattern generators locomotion gait transitions quadrupeds bifurcation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, J.C. (1986). Patterns at primary Hopf bifurcations of a plexus of identical oscillators.SIAM J. Appl. Math. 46, 199–221.MATHMathSciNetCrossRefGoogle Scholar
  2. Alexander, R. McN. (1984). The gaits of bipedal and quadrupedal animals.Int. J. Robot. Res. 3(2), 49–59.MathSciNetGoogle Scholar
  3. Alexander, R. McN. (1989). Optimization of gaits in the locomotion of vertebrates.Physiol. Rev. 69, 1199–1227.MathSciNetGoogle Scholar
  4. Aristotle. De Partibus Animalium, De Incessu Animalium, De Motu Animalium. InParts of Animals, Movement of Animals, Progression of Animals (Peek, A.S., and Forster, E.S., translators). Cambridge, MA: Harvard University Press, 1936.Google Scholar
  5. Ashwin, P. (1990). Symmetric chaos in systems of three and four forced oscillators.Nonlinearity 3, 603–617.MATHMathSciNetCrossRefGoogle Scholar
  6. Ashwin, P., King, G.P., and Swift, J.W. (1990). Three identical oscillators with symmetric coupling.Nonlinearity 3, 585–601.MATHMathSciNetCrossRefGoogle Scholar
  7. Ashwin, P. and Swift, J.W. (1992). The dynamics ofn weakly coupled identical oscillators.J. Nonlinear Sci. 2, 69–108.MATHMathSciNetCrossRefGoogle Scholar
  8. Baesens, C., Guckenheimer, J., Kim, S., and MacKay, R.S. (1991). Three coupled oscillators: Mode-locking, global bifurcations, and toroidal chaos.Physica D 49, 387–475.MATHMathSciNetCrossRefGoogle Scholar
  9. Bay, J.S. and Hemami, H. (1987). Modeling of a neural pattern generator with coupled nonlinear oscillators.IEEE Trans. Biomed. Eng. 34, 297–306.Google Scholar
  10. Brown, T.G. (1911). The intrinsic factors in the act of progression in the mammal.Proc. Roy. Soc. B 84, 308–319.CrossRefGoogle Scholar
  11. Brown, T.G. (1914). On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system.J. Physiol. (Lond.) 48, 18–46.Google Scholar
  12. Calabrese, R.L. (1980). Invertebrate central pattern generators: Modeling and complexity.Behav. Brain Sci. 3, 542–543.Google Scholar
  13. Cohen, A.H. (1988). Evolution of the vertebrate central pattern generator for locomotion. InNeural Control of Rhythmic Movements in Vertebrates (Cohen, A.H., Rossignol, S., and Grillner, S., eds.). New York: Wiley, 129–166.Google Scholar
  14. Cohen, A.H., Holmes, P.J., and Rand, R.H. (1982). The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model.J. Math. Biol. 13, 345–369.MATHMathSciNetCrossRefGoogle Scholar
  15. Collins, J.J. and Stewart, I.N. (1992). Symmetry-breaking bifurcation: A possible mechansim for 2:1 frequency-locking in animal locomotion.J. Math. Biol. 30, 827–838.MATHMathSciNetCrossRefGoogle Scholar
  16. Collins, J.J. and Stewart, I. (1993). Hexapodal gaits and coupled nonlinear oscillator models.Biol. Cybern 68, 287–298.MATHCrossRefGoogle Scholar
  17. Crawford, J.D., Golubitsky, M., Gomes, M.G.M., Knoblach, E., and Stewart, I.N. (1991). Boundary conditions as symmetry constraints. InSingularities, Bifurcations, and Dynamics: Proceedings of Symposium on Singularity Theory and Its Applications, Warwick 1989 (Roberts, M.R. and Stewart, I.N., eds.), vol. 2. Lecture Notes in Mathematics Series, Springer-Verlag, Heidelberg, 63–79.Google Scholar
  18. Dagg, A.I. (1973). Gaits in mammals.Mammal Rev. 3(4), 135–154.Google Scholar
  19. Davis, J. (1981).Garfield: Bigger than Life. New York: Ballantine.Google Scholar
  20. Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals.Science 210, 492–498.Google Scholar
  21. Epstein, I. and Golubitsky, M. (1992). Linear arrays of coupled cells. Preprint, University of Houston.Google Scholar
  22. Ermentrout, G.B. (1986). The behavior of rings of coupled oscillators.J. Math. Biol. 23, 55–74.MathSciNetGoogle Scholar
  23. Gaeta, G. (1990). Bifurcation and symmetry breaking.Phys. Reports 189, 1–87.MathSciNetCrossRefGoogle Scholar
  24. Gambaryan, P. (1974).How Mammals Run: Anatomical Adaptations. New York: Wiley.Google Scholar
  25. Glass, L. and Young, R. E. (1979). Structure and dynamics of neural network oscillators.Brain Res. 179, 207–218.CrossRefGoogle Scholar
  26. Golubitsky, M. and Stewart, I.N. (1985). Hopf bifurcation in the presence of symmetry.Arch. Rational Mech. Anal. 87, 107–165.MATHMathSciNetCrossRefGoogle Scholar
  27. Golubitsky, M. and Stewart, I.N. (1986). Hopf bifurcation with dihedral group symmetry: Coupled nonlinear oscillators. InMultiparameter Bifurcation Theory (Golubitsky, M. and Guckenheimer, J., eds.). Contemporary Math.56, Amer. Math. Soc., Providence, 131–173.Google Scholar
  28. Golubitsky, M., Stewart, I.N., and Schaeffer, D.G. (1988).Singularities and Groups in Bifurcation Theory, vol. II. New York: Springer.Google Scholar
  29. Grasman, J. and Jansen, M.J.W. (1979). Mutually synchronized relaxation oscillators as prototypes of oscillating systems in biology.J. Math. Biol. 7, 171–197.MATHMathSciNetGoogle Scholar
  30. Gray, J. (1968).Animal Locomotion. London: Weidenfeld and Nicolson.Google Scholar
  31. Grillner, S. (1975). Locomotion in vertebrates: Central mechanisms and reflex interaction.Physiol. Rev. 55, 247–304.CrossRefGoogle Scholar
  32. Grillner, S. (1985). Neurobiological bases for rhythmic motor acts in vertebrates.Science 228, 143–149.Google Scholar
  33. Grillner, S. and Wallén, P. (1985). Central pattern generators for locomotion, with special reference to vertebrates.Ann. Rev. Neurosci. 8, 233–261.CrossRefGoogle Scholar
  34. Guckenheimer, J. and Kim, S. (1990).kaos. Mathematical Sciences Institute Technical Report, Cornell University, Ithaca, New York.Google Scholar
  35. Herman, R.M., Grillner, S., Stein, P.S.G., and Stuart, D.G., eds. (1976).Neural Control of Locomotion. New York: Plenum Press.Google Scholar
  36. Hildebrand, H. (1965). Symmetrical gaits of horses.Science 150, 701–708.Google Scholar
  37. Hildebrand, H. (1966). Analysis of the symmetrical gaits of tetrapods.Folia Biotheoretica 4, 9–22.Google Scholar
  38. Hildebrand, M. (1968). Symmetircal gaits of dogs in relation to body build.J. Morphol. 124, 353–359.CrossRefGoogle Scholar
  39. von Holst, E. (1935). Erregungsbildung und Erregungsleitung im Fischrückenmark.Pflügers Arch. 235, 345–359.CrossRefGoogle Scholar
  40. von Holst, E. (1973).The Behavioral Physiology of Animals and Man. Coral Gables, FL: University of Miami Press.Google Scholar
  41. Hoyt, D.F. and Taylor, R.C. (1981). Gait and the energetics of locomotion in horses.Nature 292, 239–240.CrossRefGoogle Scholar
  42. Kelso, J.A.S. and Schöner, G. (1988). Self-organization of coordinative movement patterns.Human Movement Science 7, 27–46.CrossRefGoogle Scholar
  43. Kopell, N. (1988). Toward a theory of modelling central pattern generators. InNeural Control of Rhythmic Movements in Vertebrates (Cohen, A.H., Rossignol, S., and Grillner, S., eds.). New York: Wiley, 369–413.Google Scholar
  44. Kupfermann, I. and Weiss, K.R. (1978). The command neuron concept.Behav. Brain Sci. 1, 3–39.CrossRefGoogle Scholar
  45. McGhee, R.B. (1968). Some finite state aspects of legged locomotion.Math. Biosci. 2, 67–84.MATHCrossRefGoogle Scholar
  46. McGhee, R.B. and Jain, A.K. (1972). Some properties of regularly realizable gait matrices.Math. Biosci. 13, 179–193.MATHMathSciNetCrossRefGoogle Scholar
  47. Murray, J.D. (1989)Mathematical Biology. Biomathematics Texts 19. New York: Springer-Verlag.MATHGoogle Scholar
  48. Muybridge, E. (1899).Animals in Motion. London: Chapman and Hall. Republished Dover Publications, New York, 1957.Google Scholar
  49. Muybridge, E. (1901).The Human Figure in Motion. London: Chapman and Hall. Republished Dover Publications, New York, 1955.Google Scholar
  50. Raibert, M.H. (1986). Running with symmetry.Int. J. Robot. Res. 5, 3–19.Google Scholar
  51. Raibert, M.H. (1988). Balance and symmetry in running. InNatural Computation (Richards, W., ed.). Cambridge, MA: MIT Press, 487–503.Google Scholar
  52. Rand, R., Cohen, A.H., and Holmes, P.J. (1988). Systems of coupled oscillators as models of central pattern generators. InNeural Control of Rhythmic Movements in Vertebrates (Cohen, A.H., Rossignol, S., and Grillner, S., eds.). New York: Wiley, 333–367.Google Scholar
  53. Schmidt-Nielsen, K. (1990).Animal Physiology: Adaptation and Environment. Cambridge: Cambridge University Press.Google Scholar
  54. Schönder, G., Yiang, W. Y., and Kelso, J.A.S. (1990). A synergetic theory of quadrupedal gaits and gait transitions.J. Theor. Biol. 142, 359–391.CrossRefGoogle Scholar
  55. Selverston, A.I. (1980). Are central pattern generators understandable?Behav. Brain Sci. 3, 535–571.Google Scholar
  56. Shik, M.L. and Orlovsky, G.N. (1976). Neurophysiology of locomotor automatism.Physiol. Rev. 56, 465–501.Google Scholar
  57. Smale, S. (1974). A mathematical model of two cells via Turing's equation. InSome Mathematical Questions in Biology V (Cowan, J.D., ed.). Amer. Math. Soc. Lecture Notes on Mathematics in the Life Sciences6, Providence, 15–26.MathSciNetGoogle Scholar
  58. Stein, P.S.G. (1978). Motor systems, with specific reference to the control of locomotion.Ann. Rev. Neurosci. 1, 61–81.CrossRefGoogle Scholar
  59. Swift, J.W. (1988). Hopf bifurcation with the symmetry of the square.Nonlinearity 1, 333–377.MATHMathSciNetCrossRefGoogle Scholar
  60. Taft, R. (1955). An introduction: Eadweard Muybridge and his work. In Muybridge, E.The Human Figure in Motion. New York: Dover Publications, vii-xiv.Google Scholar
  61. Willis, J.B. (1980). On the interaction between spinal locomotor generators in quadrupeds.Brain Res. Rev. 2, 171–204.MathSciNetCrossRefGoogle Scholar
  62. Yuasa, H. and Ito, M. (1990). Coordination of many oscillators and generation of locomotory patterns.Biol. Cybern. 63, 177–184.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1993

Authors and Affiliations

  • J. J. Collins
    • 1
    • 2
  • I. N. Stewart
    • 3
  1. 1.Oxford Orthopaedic Engineering Centre, Nuffield Orthopaedic CentreUniversity of OxfordHeadingtonUK
  2. 2.NeuroMuscular Research Center and Department of Biomedical EngineeringBoston UniversityBostonUSA
  3. 3.Nonlinear Systems Laboratory, Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations