Journal of Nonlinear Science

, Volume 3, Issue 1, pp 109–151 | Cite as

Euler's problem, Euler's method, and the standard map; or, the discrete charm of buckling

  • G. Domokos
  • P. Holmes
Article

Summary

We explore the relation between the classical continuum model of Euler buckling and an iterated mapping which is not only a mathematical discretization of the former but also has an exact, discrete mechanical analogue. We show that the latter possesses great numbers of “parasitic” solutions in addition to the natural discretizations of classical buckling modes. We investigate this rich bifurcational structure using both mechanical analysis of the boundary value problem and dynamical studies of the initial value problem, which is the familiar standard map. We use this example to explore the links between discrete initial and boundary value problems and, more generally, to illustrate the complex relations among physical systems, continuum and discrete models and the analytical and numerical methods for their study.

Key words

Euler buckling standard map bifurcation homoclinic orbits discretization inhomogeneous continuum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amick, C., Ching, E. S. C., Kadanoff, L. P., and Rom-Kedar, V. (1992) Beyond All Orders: Singular Perturbations in a Mapping.J. of Nonlinear Science 2:9–67.MATHMathSciNetCrossRefGoogle Scholar
  2. Antman, S. S., and Adler, C. L. (1987) Design of Material Properties that Yield a Prescribed Global Buckling Response.J. Applied Mech 109: 263–268.MathSciNetGoogle Scholar
  3. Arnold, V. I. (1983) Geometrical Methods in the Theory of Ordinary Differential Equations. New York, Berlin, Heidelberg: Springer. (Grundlehren der Math. Wiss.250).MATHGoogle Scholar
  4. Aubry, S. (1983) The Twist Map, the Extended Frenkel-Kontorova Model and the Devil's Staircase.Physica D 7: 240–258.MathSciNetCrossRefGoogle Scholar
  5. Babuška, I. (1990) The Problem of Modeling the Elastomechanics in Engineering.Computer Methods in Mechanics and Engineering 82: 155–182.CrossRefMATHGoogle Scholar
  6. Channel, P. J., and Scovel, C. (1990) Symplectic Integration of Hamiltonian Systems.Nonlinearity 3: 231–259.MathSciNetCrossRefGoogle Scholar
  7. Chenciner, A. (1983) Bifurcations de difféomorphismes deR 2 au voinsinage d'un point fixe élliptique. Les Houches Summer School Proceedings, ed. R. Helleman, G. Iooss, North Holland.Google Scholar
  8. Chirikov, B. V. (1979) A Universal Instability of Many-Dimensional Oscillator Systems.Phys. Reports 52:263–379.MathSciNetCrossRefGoogle Scholar
  9. Coxeter, H. S. M. (1969)Introduction to Geometry. New York, NY, Chichester, England: John Wiley and Sons.MATHGoogle Scholar
  10. Crandall, M. G., and Rabinowitz, P. H. (1970) Nonlinear Sturm-Liouville Eigenvalue Problems and Topological Degree.J. Math. Mech. 19:1083–1102.MATHMathSciNetGoogle Scholar
  11. De Vogelaére, R. (1956) Methods of Integration Which Preserve the Contact Transformation Property of the Hamiltonian Equations. Department of Mathematics, University of Notre Dame, report4.Google Scholar
  12. Devaney, R. L. (1986)An Introduction to Chaotic Dynamical Systems. Menlo Park, CA: The Benjamin/Cummings Publishing Co., Inc.MATHGoogle Scholar
  13. Domokos G. (1991) Computer Experiments with Elastic Chains.Newsletter of the Technical University of Budapest 9(1): 14–26.Google Scholar
  14. Domokos G. (1992) Secondary Bifurcations in the Euler Problem.Newsletter of the Technical University of Budapest 10(1): 4–11.MathSciNetGoogle Scholar
  15. El Naschie, M. S. (1990) On the Suspectibility of Local Elastic Buckling to Chaos.ZAMM 70(12): 535–542.MATHGoogle Scholar
  16. Euler, L. (1744)Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes. Lausanne:Genf (German edition: Ostwald's Klassiker der Exakten Wiss.75 Leipzig: W. Engelmann).Google Scholar
  17. Fontich, E. and Simo, C. (1990) The Splitting of Separatrices for Analytic Diffeomorphisms.J. Ergod Theory and Dynamical Systems 10: 295–318.MATHMathSciNetGoogle Scholar
  18. Gáspár Zs., and Domokos, G. (1989) Global Investigation of Discrete Models of the Euler Buckling Problem.Acta Technica Acad. Sci. Hung. 102(3–4): 227–238.MATHGoogle Scholar
  19. Greene, J. M. (1979) Method for Determining Stochastic Transition.J. Math. Phys. 20(6): 1183–1201.CrossRefGoogle Scholar
  20. Guckenheimer, J., and Holmes, P. (1983)Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields. New York, Berlin, Heidelberg (Appl. Math. Sci. 42.)Google Scholar
  21. Guckenheimer, J., Myers, M. R., Wicklin, F. J., and Worfolk, P. A. (1991) dstool: A Dynamical System Toolkit with an Interactive Graphical Interface.Center for Applied Mathematics, Cornell University.Google Scholar
  22. Hegedüs I. (1986) Analysis of lattice single layer cylindrical structures.J. of Space Structures 2: 87–89.Google Scholar
  23. Holmes, P. (1982) The Dynamics of Repeated Impact with a Sinusoidally Vibrating Table.J. of Sound and Vibration 84(2): 173–189.MATHCrossRefGoogle Scholar
  24. Holmes, P., and Williams, R. F. (1985) Knotted Periodic Orbits in Suspensions of Smale's Horseshoe: Torus Knots and Bifurcation Sequences.Arch. Rat. Mech. Anal. 90(2): 115–194.MATHMathSciNetCrossRefGoogle Scholar
  25. Kirchhoff, G. (1859) Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes.J. für Math. (Crelle) 56: 285–313.MATHGoogle Scholar
  26. Lazutkin, V. F., Schachmannski, I. G., and Tabanov, M. B. (1989) Splitting of Separatrices for Standard and Semistandard Mappings.Physica D 40: 235–248.MATHMathSciNetCrossRefGoogle Scholar
  27. Lichtenberg, A. J., and Lieberman, M. A. (1982)Regular and Stochastic Motion. New York, Berlin, Heidelberg: Springer. (Appl. Math. Sci.38).Google Scholar
  28. Love, A. E. H. (1927)A Treatise on the Mathematical Theory of Elasticity. Dover Publications, N.Y.MATHGoogle Scholar
  29. Maddocks, J. H. (1984) Stability of Nonlinearly Elastic Rods.Arch. Rat. Mech. Anal. 85(4): 311–354.MATHMathSciNetCrossRefGoogle Scholar
  30. Maddocks, J. H. (1987) Stability and Folds.Arch. Rat. Mech. 99(4): 301–328.MathSciNetCrossRefGoogle Scholar
  31. Marsden, J. E., O'Reilly, O., Wicklin, F. J., and Zombro, B. W. (1991) Symmetry, Stability, Geometric Phases and Mechanical Integrators.Nonlinear Sci. Today 1(1): 4–11,1(2): 14–21.MATHMathSciNetGoogle Scholar
  32. Melnikov, V. K. (1963) On the Stability of the Center for Time Periodic Perturbations.Trans. Moscow Math. Soc. 12: 1–57.MATHGoogle Scholar
  33. Meyer, K. (1970) Generic Bifurcation of Periodic Points.Trans. Ann. Math. Soc. 149: 95–107.MATHCrossRefGoogle Scholar
  34. Meyer, K. (1971) Generic Stability Properties of Periodic Points.Trans. Ann. Math. Soc. 154: 273–277.MATHCrossRefGoogle Scholar
  35. Mielke, A., and Holmes, P. (1988) Spatially Complex Equilibria of Buckled Rods.Arch. Rat. Mech. 101(4): 319–348.MATHMathSciNetCrossRefGoogle Scholar
  36. Peitgen, H. O., Saupe, D., and Schmitt, K. (1981) Nonlinear Elliptic Boundary Value Problems Versus Finite Difference Approximations: Numerically Irrelevant Solutions.J. Reine u. Angew. Math. (Crelle) 322: 74–117.MATHMathSciNetGoogle Scholar
  37. Reinhall, P. G., Caughey, T. K., and Sorti, D. W. (1989) Order and Chaos in a Discrete Duffing Oscillator: Implications on Numerical Integration.J. Appl. Mech. 56(1): 162–167.MATHMathSciNetCrossRefGoogle Scholar
  38. Rózsa P. (1974)Linear Algebra and Applications. (In Hungarian:Lineáris algebra és alkalmazásai) Budapest: Müszaki Könyvkiadó.Google Scholar
  39. Thompson, J. M. T., and Virgin, L. N. (1988) Spatial Chaos and Localization Phenomena.Physics Letters A 126(8–9): 491–496.MathSciNetCrossRefGoogle Scholar
  40. Weinberger, H.F. (1974)Variational Methods for Eigenvalue Approximation. CBMS Conference Series 15,SIAM, Philadelphia.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1993

Authors and Affiliations

  • G. Domokos
    • 1
  • P. Holmes
    • 3
  1. 1.Department of Theoretical and Applied MechanicsCornell UniversityIthaca
  2. 2.Department of Strength of MaterialsTechnical University ofBudapestHungary
  3. 3.Department of Theoretical and Applied MechanicsCornell UniversityIthacaUSA

Personalised recommendations