Journal of Nonlinear Science

, Volume 2, Issue 1, pp 69–108 | Cite as

The dynamics ofn weakly coupled identical oscillators

  • P. Ashwin
  • J. W. Swift


We present a framework for analysing arbitrary networks of identical dissipative oscillators assuming weak coupling. Using the symmetry of the network, we find dynamically invariant regions in the phase space existing purely by virtue of their spatio-temporal symmetry (the temporal symmetry corresponds to phase shifts). We focus on arrays which are symmetric under all permutations of the oscillators (this arises with global coupling) and also on rings of oscillators with both directed and bidirectional coupling. For these examples, we classify all spatio-temporal symmetries, including limit cycle solutions such as in-phase oscillation and those involving phase shifts. We also show the existence of “submaximal” limit cycle solutions under generic conditions. The canonical invariant region of the phase space is defined and used to investigate the dynamics. We discuss how the limit cycles lose and gain stability, and how symmetry can give rise to structurally stable heteroclinic cycles, a phenomenon not generically found in systems without symmetry. We also investigate how certain types of coupling (including linear coupling between oscillators with symmetric waveforms) can give rise to degenerate behaviour, where the oscillators decouple into smaller groups.

Key words

weakly coupled oscillators bifurcation with symmetry structurally stable heteroclinic cycles 

AMS/MOS classification numbers

34C 58F 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. C. Alexander and G. Auchmuty. Global bifurcations of phase-locked oscillators.Arch. Rat. Mech. Anal., 93:253–270, 1986.MathSciNetCrossRefGoogle Scholar
  2. [2]
    J. C. Alexander and B. Fiedler. Global bifurcations of coupled symmetric oscillators. In Ladas, Dafermos and Papanicolaou, editors,Proceedings of the Equadiff Conference, volume 118 ofLecture Notes in Pure and Applied Mathematics (Differential Equations), pages 7–26. AMS, Providence, RI, 1987.Google Scholar
  3. [3]
    A. A. Andronov, A. A. Vitt, and S. E. Chaikin.Theory of oscillators. Pergamon, Oxford, 1966.Google Scholar
  4. [4]
    D. G. Aronson, E. J. Doedel, and H. G. Othmer. The dynamics of coupled current-biased Josephson junctions—part ii.International Journal of Bifurcation and Chaos, 1:51–66, 1991.MathSciNetCrossRefGoogle Scholar
  5. [5]
    D. G. Aronson, M. Golubitsky, and M. Krupa. Coupled arrays of Josephson junctions and bifurcations of maps with S(n) symmetry.Nonlinearity, 4:8 G1–902 (1991).MathSciNetGoogle Scholar
  6. [6]
    P. Ashwin, G. P. King, and J. W. Swift. Three identical oscillators with symmetric coupling.Nonlinearity, 3:585–603, 1990.MathSciNetCrossRefGoogle Scholar
  7. [7]
    C. Baesens, J. Guckenheimer, S. Kim, and R. S. MacKay. Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos.Physica D, 24:387–475, 1991.MathSciNetCrossRefGoogle Scholar
  8. [8]
    E. J. Doedel, D. G. Aronson, and H. G. Othmer. The dynamics of coupled current-biased Josephson junctions: part 1.IEEE CAS, 35:810–817, 1988.MathSciNetGoogle Scholar
  9. [9]
    T. Endo and S. Mori. Mode analysis of a ring of a large number of mutually coupled van der pol oscillators.IEEE CAS, 25:7–18, 1978.Google Scholar
  10. [10]
    G. B. Ermentrout. The behavior of rings of coupled oscillators.J. Math. Biol., 23:55–74, 1985.MATHMathSciNetGoogle Scholar
  11. [11]
    G. B. Ermentrout and N. Kopell. Frequency plateaus in a chain of weakly coupled oscillators.SIAM J. Math. Anal., 15:215–237, 1984.MathSciNetCrossRefGoogle Scholar
  12. [12]
    B. Fiedler,Global bifurcations of periodic solutions with symmetry, volume 1309 ofSpringer lecture notes in mathematics. Springer, Berlin, 1988.Google Scholar
  13. [13]
    M. J. Field and R. W. Richardson. Symmetry breaking and the maximal isotropy subgroup conjecture for reflection groups.Arch. Rat. Mech. Anal., 105:61–94, 1989.MathSciNetCrossRefGoogle Scholar
  14. [14]
    M. Golubitsky and I. N. Stewart. Hopf bifurcation in the presence of symmetry.Arch. Rat. Mech. Anal., 87:107–165, 1985.MathSciNetCrossRefGoogle Scholar
  15. [15]
    M. Golubitsky and I. N. Stewart. Hopf bifurcation with dihedral group symmetry. InMultiparameter bifurcation theory, volume 56 ofContemporary Maths, pages 131–173. AMS, Providence, RI, 1985.Google Scholar
  16. [16]
    M. Golubitsky, I. N. Stewart, and D. Schaeffer.Groups and singularities in bifurcation theory, volume 2. App. Math. Sci. 69. Springer, New York, 1988.Google Scholar
  17. [17]
    J. Grasman and M. J. W. Jansen. Mutually synchronised relaxation oscillators as prototypes of oscillating systems in biology.J. Math. Biol., 7:171–197, 1988.MathSciNetGoogle Scholar
  18. [18]
    J. Guckenheimer and P. Holmes.Nonlinear oscillations, dynamical systems and bifurcations of vector fields. App. Math. Sci. 42. Springer, New York, 1983.Google Scholar
  19. [19]
    P. Hadley.Dynamics of Josephson junction arrays. Ph.D. thesis, Dept. of Applied Physics, Stanford University, 1989.Google Scholar
  20. [20]
    P. Hadley, M. R. Beasley, and K. Wisenfeld. Phase locking of Josephson junction series arrays.Phys. Rev. B, 38:8712–8719, 1988.CrossRefGoogle Scholar
  21. [21]
    C. Hayashi.Nonlinear oscillations in physical systems. McGraw Hill, 1964. Reprinted 1985 by Princeton University Press.Google Scholar
  22. [22]
    M. Hirsch, C. Pugh, and M. Shub.Invariant manifolds. LNM 583. Springer, Berlin, 1977.Google Scholar
  23. [23]
    N. Kopell and G. B. Ermentrout. Symmetry and phase locking in chains of weakly coupled oscillators.Comm. Pure App. Math., 39:623–660, 1986.MathSciNetGoogle Scholar
  24. [24]
    D. Linkens. Nonlinear circuit mode analysis.IEEE Proc., 130A:69–87, 1983.MathSciNetGoogle Scholar
  25. [25]
    J. D. Murray.Mathematical biology, Biomathematics, 13. Springer, Berlin, 1989.Google Scholar
  26. [26]
    H. G. Othmer and L. E. Scriven. Instability and dynamic pattern formation in cellular networks.J. Theor. Biology, 32:507–537, 1971.CrossRefGoogle Scholar
  27. [27]
    J. A. Sanders and F. Verhulst.Averaging methods in nonlinear dynamical systems. App. Math. Sci. 59. Springer, New York, 1985.Google Scholar
  28. [28]
    J. W. Swift. Hopf bifurcation with the symmetry of the square.Nonlinearity, 1:333–377, 1988.MATHMathSciNetCrossRefGoogle Scholar
  29. [29]
    J. W. Swift, S. H. Strogatz, and K. Wiesenfeld. Averaging of globally coupled oscillators. Preprint, NAU, 1991.Google Scholar
  30. [30]
    K. Y. Tsang, R. E. Mirollo, S. H. Strogatz, and K. Wiesenfeld. Slow dynamics in a globally coupled oscillator array. Submitted toPhysica D, 1990.Google Scholar
  31. [31]
    K. Y. Tsang and I. B. Schwartz. Interhyperhedral diffusion in Josephson junction arrays. Preprint, 1991.Google Scholar
  32. [32]
    A. M. Turing. The chemical basis of morphogenesis.Phil. Trans. Roy. Soc. Lond. B, 237:37–72, 1952.Google Scholar
  33. [33]
    B. van der Pol. On relaxation oscillations.Phil. Mag., 7–2:978–992, 1926.Google Scholar
  34. [34]
    B. van der Pol. Forced oscillations in a circuit with nonlinear resistance.Phil. Mag., 7–3:18–38, 1927.Google Scholar
  35. [35]
    K. Wiesenfeld and P. Hadley. Attractor crowding in oscillator arrays.Phys. Rev. Lett., 62:1335–1338, 1988.MathSciNetCrossRefGoogle Scholar
  36. [36]
    S. Wiggins.Global bifurcations and chaos. App. Math. Sci. 73. Springer, New York, 1988.Google Scholar
  37. [37]
    A. T. Winfree. Biological rhythms and the behaviour of populations of coupled oscillators.Theoretical Biology, 16:15–42, 1967.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1992

Authors and Affiliations

  • P. Ashwin
    • 1
  • J. W. Swift
    • 2
  1. 1.Mathematics InstituteUniversity of WarwickCoventryUnited Kingdom
  2. 2.Department of MathematicsNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations